
Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

1

Contents

1. Chapter ... 3

Overview of software Engineering & the Software Development Process .. 3
1.1. Definition of Software and Characteristics of Software .. 3

1.2. Types/ Categories of Software: ... 5
1.3. Software Engineering- Definition, Need ... 6
1.4. Relationship between Systems Engineering and Software Engineering ... 6
1.5. Software engineering layers: A Layered Technology Approach .. 7
1.6. Software Development Generic Process Framework – Software Process, Software Product,

Software Work – Product, Basic Framework Activities, Umbrella Activities 8

1.7. Personal And Team Process Models (PSP and TSP) – Concept, Significance with respect to

Ongoing Process Improvement, Goals, List of framework activities included 10

1.8. Prescriptive Process Models: ... 12
1.9. Agile Software Development: ... 18
2. Chapter 2 .. 22

Software Engineering Practices And Software Requirements Engineering 22
2.1. Software Engineering Practices – Definition, Importance, Essence ... 22
2.2. Core Principles of Software Engineering (Statements & Meaning of each Principle) 23

2.3. Communication Practices (Concept, Need of communication, Statements and Meaning of each

Principle) ... 23
2.4. Planning Practices (Concept, Need of planning, basic activities included, statements and meaning

of each principle.) ... 24
2.5. Modeling Principles ... 26

2.6. Construction Practices ... 28
2.7. Software Deployment .. 30

2.8. Requirements Engineering ... 30
2.9. SRS (Software Requirements Specifications) ... 32

3. Chapter 3 .. 34

Analysis and Design Modeling ... 34
3.1. Analysis Modeling ... 34
3.2. Analysis Rules of Thumb .. 34
3.3. Domain Analysis ... 35

3.4. Building the Analysis Model ... 36
3.5. Design Modeling ... 47

3.6. The Design Model ... 51
4. Chapter 4 .. 54

Software Testing Strategies and Methods .. 54
4.1. Software Testing .. 54
4.2. Characteristics of Testing Strategies ... 54
4.3. Software Verification and Validation (V & V) ... 55
4.4. Testing Strategies ... 56

4.5. Alpha and Beta Testing ... 61
4.6. System Testing ... 62
4.7. Concept of White-Box and Black-Box Testing ... 63
4.8. Debugging .. 65
4.9. Debugging Strategies ... 65

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

2

5. Chapter ... 67

Software Project Management .. 67
5.1. Introduction to Software Project Management & its need... 67
5.2. The Management Spectrum – the 4 P’s and their significance .. 67
5.3. Project Scheduling ... 69
5.4. Concept of Task Network .. 72

5.5. Ways of Project Tracking .. 73
5.6. Risk Management .. 75
5.7. Risk Assessment .. 76
5.8. Risk Control – Need and RMMM Strategy ... 80
5.9. Software Configuration Management (SCM) .. 82

6. Chapter ... 90

Software Quality Management .. 90
6.1. Basic Quality Concept ... 90

6.2. Software Quality Assurance .. 90
6.3. Concept of Statistical SQA .. 91
6.4. Quality Evaluation Standards .. 93

Requirement .. 94
Output ... 94

Input .. 94

6.5. CMMI – CMMI levels, Process Area Considered ... 95
6.6. CMMI Vs ISO.. 97

6.7. MsCall’s Quality Factors ... 97

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

3

1. Chapter

Overview of software Engineering & the Software Development Process

1.1. Definition of Software and Characteristics of Software

Computer software is the product that software professionals build and then support over the

long term.

Software is a set of instructions to acquire inputs and to manipulate them to produce the

desired output in terms of functions and performance as determined by the user of the

software.

“Ideas and technological discoveries are the driving engines of economic growth.”

-The Wall Street Journal

“In modern society, the role of engineering is to provide systems and products that enhance the

material aspects of human life, thus making life easier, safer, move secure, and more

enjoyable.”

 - Richard Fairley & Mary Will Shire

Software Engineering is defined as a discipline that addresses the following aspects of the

software and its development. The aspects are:

1. Economic : Cost, Benefits, and Returns on Investment (ROI).

2. Design : Ease of development and ensuring delivery of customer requirements.

3. Maintenance : Ease of effecting changes and modifications.

4. Implementation : Ease of installation, Demonstration, and implementation of software by

the customer and users.

It is an engineering discipline which is systemic, scientific, and methodical and uses standards,

models and algorithms in design & development.

The IEEE (Institution of Electrical and Electronics Engineers) defines Software Engineering as

the application of a systematic, disciplined, quantifiable approach to the development,

operations and maintenance of software.

Today, software takes on a dual role. It is both a product and a vehicle for delivering a

product. As a product, it delivers the computing potential embodied by computer hardware or,

more broadly, by a network of computers that are accessible by local hardware. Software is an

information transformer - producing, managing, acquiring, modifying, displaying, or

transmitting information that can be as simple as a single bit or as complex as a multimedia

presentation.

As a vehicle, for delivering the product, software acts as the basis for the control of computer

(Operating System), the communication of information (networks), and the creation and

control of other programs (Software tools and environments).

“Computers make it easy to do a lot of things, but most of the things they make it easier to do

don’t need to be done”

- Andy Rooney

Characteristics of Software:

Software is written to handle an Input – Process – Output system to achieve predetermined

goals. Software is logical rather than a physical system element. Therefore software has

characteristic that are different than that of hardware.

1. Software is developed or engineered; it is not manufactured in the classical sense.

2. Software doesn’t “wear out” like hardware and it is not degradable over a period.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

4

The following figure depicts failure rate as a function of time for hardware. The relationship

often called as “bathtub curve”, indicates that, hardware exhibits relatively high failure rates

early in its life.

Failure curve for Hardware:

Time

Failure curve for Software:

Software is not susceptible to the environmental maladies that cause hardware to wear out.

Hence, the failure rate curve for software should take the form of “idealized curve” as shown

in the above figure. Undiscovered defects will cause high failure rates early in the life of a

program. However, these are corrected and the curve flattens as shown. Hence the software

doesn’t wear out, but it does deteriorate.

3. Although the industry is moving toward component – based construction, most software

continues to be custom built.

4. A software component should be designed and implemented so that it can be reused in

many different programs.

The classical and conventional definition of software is that it is a set of instructions, which,

when executed through a computing device, produces the desired result by the execution of

functions and processes.

Software is a set of instructions to acquire inputs and to manipulate them to produce the

desired output in terms of functions and performance as determined by the user of the

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

5

software. It also includes a set of documents, such as the software manual, meant for users to

understand the software system. Today’s software comprises the source code, Executable,

Design Documents, Operations and System Manuals and installation and Implementation

Manuals.

Software is described by its capabilities. The capabilities relate to the functions it executes,

the features it provides and the facilities it offers.

1.2. Types/ Categories of Software:

Today, seven broad categories of computer software present continuing challenges for

software engineers.

1. System Software:

System Software is a collection of programs written to serve other programs. Some

system software (e.g.- compliers, editors, and file management utilities) processes

complex, but determinate information structures. Other system applications (e.g.-

operating system components, drivers, networking software, telecommunications

processors) process largely indeterminate data. In either case, the systems software area is

characterized by heavy interaction with computer hardware; heavy usage by multiple

users; concurrent operation that requires scheduling, resource sharing, and sophisticated

process management; complex data structures; and multiple external interfaces.

2. Application Software:

Application Software consists of standalone programs that solve a specific business need.

Applications in this area process business or technical data in a way that facilities business

operations or management / technical decision-making.

3. Engineering / Scientific Software:

Formerly characterized by “number crunching” algorithms, engineering and scientific

software applications range from astronomy to volcanology, from automotive stress

analysis to space shuttle orbital dynamics, and from molecular biology to automated

manufacturing. Computer-aided design, system simulation, and other interactive

applications have begun to take on real–time and even system software characteristics.

4. Embedded Software:

Embedded Software resides within a product or system and is used to implement and

control features and functions for the end-user and for the system itself. Embedded

software can perform limited and esoteric functions (e.g. keypad control for a microwave

oven) or provide significant function and control capability (e.g. digital functions in an

automobile such as fuel control, dashboard displays, braking systems, etc.)

5. Product–line Software:

Designed to provide a specific capability for use by many different customers, product–

line software can focus on a limited & esoteric market place (e.g. – inventory control

products) or address mass consumer markets (e.g. – word processing, spreadsheets,

computer graphics, multimedia, entertainment, database management, personal and

business financial applications.)

6. Web – applications:

“WebApps”, span a wide array of applications. WebApps are evolving into sophisticated

computing environments that not only provide standalone features, computing functions,

and content to the end user, but also are integrated with corporate databases and business

applications.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

6

7. Artificial Intelligence Software:

AI Software makes use of non–numerical algorithms to solve complex problems that are

not amenable to computation or straightforward analysis. Applications within this area

include robotics, expert systems, pattern recognition (image and voice), artificial neural

networks, theorem proving, and game playing.

Due to changing nature of software, i.e. rapid growth of technology, the challenge for

software engineers will be –

a) To develop systems and application software that will allow small devices, personal

computers, and enterprise system to communicate across vast networks to meet rapid

growth of wireless networking.

b) To architect simple (e.g.- personal financial planning) and sophisticated applications

that provide benefit to targeted end-user markets worldwide to meet rapid growth of

net sourcing (World Wide Web)

c) To build source code that is self descriptive, but, more importantly, to develop

techniques that will enable both customers and developers to know what changes have

been made and how those changes manifest themselves within the software.

d) To build applications that will facilitate mass communication and mass product

distribution using concepts that is only now forming.

e) “The computer itself will make a historic transition from something that is used for

analytic tasks…. to something that can elicit emotion”.

- David Vaskevitch

1.3. Software Engineering- Definition, Need

According to Fritz Bauer, software engineering is establishment and use of sound engineering

principles in order to obtain economically software that is reliable and works efficiently on

real machines.

“More than a discipline, or a body of knowledge, engineering is a verb, an action word, a way

of approaching a problem”.

- Scott Whit mire

A more comprehensive definition of IEEE-

Software Engineering:

The application of a systematic, disciplined, quantifiable approach to the development,

operation and maintenance of software; that is the application of engineering to software.

1.4. Relationship between Systems Engineering and Software Engineering

Software Engineering

Software engineering deals with designing and developing software of the highest quality. A

software engineer does analyzing, designing, developing and testing software. Software

engineers carry out software engineering projects, which usually have a standard software life

cycle. For example, the Water Fall Software Life cycle will include an analysis phase, design

phase, development phase, testing and verification phase and finally the implementation phase.

Analysis phase looks at the problem to be solved or the opportunities to be seized by

developing the software. Sometimes, a separate business analyst carries out this phase.

However, in small companies, software engineers may do this task. Design phase involves

producing the design documents such as UML diagrams and ER diagrams depicting the

overall structure of the software to be developed and its components. Development phase

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

7

involves programming or coding using a certain programming environment. Testing phase

deals with verifying that software is bug free and also satisfies all the customer requirements.

Finally, the completed software is implemented at the customer site (sometimes by a separate

implementation engineer). In recent years, there has been a rapid growth of other software

development methodologies in order to further improve the efficiency of the software

engineering process. For example, Agile methods focus on incremental development with very

short development cycles. Software Engineering profession is a highly rated job because of its

very high salary range.

System Engineering

System Engineering is the sub discipline of engineering which deals with the overall

management of engineering projects during their life cycle (focusing more on physical

aspects). It deals with logistics, team coordination, automatic machinery control, work

processes and similar tools. Most of the times, System Engineering overlaps with the concepts

of industrial engineering, control engineering, organizational and project management and

even software engineering. System Engineering is identified as an interdisciplinary

engineering field due to this reason. System Engineer may carry out system designing,

developing requirements, verifying requirements, system testing and other engineering studies.

1.5. Software engineering layers: A Layered Technology Approach

Software engineering is a layered technology. The layers of software engineering as shown in

the above diagram are:-

1. A Quality Focus:

Any engineering approach (including software engineering) must rest on an organizational

commitment to quality. Total quality management, six sigma and similar philosophies

foster a continuous process improvement culture, and it is this culture that ultimately leads

to the development of increasingly more effective approaches to software engineering.

The bedrock that supports software engineering is a quality focus.

2. Process Layer:

The foundation for software engineering is the process layer. Software Engineering

process is the glue that holds the technology layers together and enables rational and

timely development of computer software. Process defines a framework that must be

established for effective delivery of software engineering technology. The software

process forms the basis for management control of software projects and establishes the

context in which technical methods are applied, works products (models, documents, data,

reports, forms etc.) are produced, milestones are established, quantity is ensured and

change is properly managed.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

8

3. Methods:

Software Engineering methods provide the technical “how to’s” for building software.

Methods encompass a broad array of tasks that include communication, requirements

analysis, design modeling, program construction, testing and support.

4. Tools:

Software Engineering tools provide automated or semi-automated support for the process

and the methods. When tools are integrated so that information created by one tool can be

used by another, a system for the support of software development, called computer–aided

software engineering is established.

1.6. Software Development Generic Process Framework – Software Process, Software

Product, Software Work – Product, Basic Framework Activities, Umbrella Activities

A process framework establishes the foundation for a complete software process by

identifying a small number of framework activities that are applicable to all software projects,

regardless of their size or complexity. In addition, the process framework encompasses a set of

umbrella activities that are applicable across the entire software process.

Software Process

Process Framework

Umbrella activities

.

.

Framework activity #1

Software engineering action #1.1

Task sets

 .

 .

 .

Software engineering action #1.k

Task sets

Work tasks

Work products

Quality assurance points

Project milestones

Work tasks

Work products

Quality assurance points

Project milestones

Framework activity #n

Software engineering action #n.1

Task sets

 .

 .

 .

Software engineering action #n.m

Task sets

Work tasks

Work products

Quality assurance points

Project milestones

Work tasks

Work products

Quality assurance points

Project milestones

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

9

From the above figure, each framework activity is populated by a set of software engineering

actions- a collection of related tasks that produces a major software engineering work product

(e.g. design is a SE action). Each action is populated with individual work tasks that

accomplish some part of the work implied by the action.

“A process defines who is doing what, when and how to reach a certain goal”.

- Ivar Jacobson, Grady Booch and James Rumbaugh

The following generic process framework is applicable to the vast majority of software

projects.

1. Communication :

 This framework activity involves heavy communication & collaboration with the customer

(and the stakeholders) and encompasses requirements gathering and other related activities.

2. Planning :

 This activity establishes a plan for the software engineering work that follows. It describes

the technical tasks to be conducted, the risks that are likely, the resources that will be

required, the work products to be produced and a work schedule.

3. Modeling :

 This activity encompasses the creation of models that allow the developer & the customer

to better understand software requirements & the design that will achieve those

requirements.

4. Construction :

 This activity combines code generation and the testing that is required to uncover errors in

the code.

5. Deployment :

 The software is delivered to the customer who evaluates the delivered product and

provides feedback based on the evaluation.

 “Einstein argued that there must be a simplified explanation of nature, because God is not

capricious or arbitrary. No such faith comforts the software engineer. Much of the

complexity that he must master is arbitrary.”

- Fred Brooks

Umbrella Activities:

Generic views of SE is complemented by a set of unbrella activities. They are

Software Project tracking and control:

The framework described in the generic view of SE is complemented by a number of umbrella

activities, one of which is software project tracking and control. It allows the software team to

access progress against the project plan and takes necessary action to maintain schedule.

Umbrella activities occur throughout the software process and focus primarily on project

management, tracking and control.

Risk Management:

Assess risks that are likely to affect performance and quality of project.

Software quality assurance:

Define and conduct activities to ensure software quality.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

10

Formal Technical Review:

Assess Software Engg. Work products to uncover and remove errors before they are shifted to

next level of activity.

Measurement:

Defines and collects process, project and product measures to assist the team in delivering the

software that meets customer needs can be used in conjunction with all framework and

umbrella activities.

Software configuration Management (SCM):

Manages and effects the changes throughout the software process.

Reusability management:

Defines criteria for work product reuse (including software components) and establishes the

mechanism to achieve reusable components.

Work product preparation and production:

Includes activities for creating work product such as models, documents, large,

1.7. Personal And Team Process Models (PSP and TSP) – Concept, Significance with respect

to Ongoing Process Improvement, Goals, List of framework activities included

The best software process is one that is close to the people who will be doing the work.

Watts Humphrey argues that it is possible to create a “Personal Software Process” and/or a

“Team Software Process”. Both require hard work, training and co-ordination, but both are

achievable.

“A person who is successful has simply formed the habit of doing things that unsuccessful

people will not do”.

- Dexter Yager

Personal Software Process(PSP):

Watts Humphrey suggests that in order to change an ineffective personal process, an

individual must move through four phases, each requiring training and careful instrumentation.

The personal software process (PSP) emphasizes personal measurement of both the work

product that is produced and the resultant quantity of the work product. In addition, the PSP

makes the practitioner responsible for project planning (e.g. estimating and scheduling) and

empowers the practitioner to control the quantity of all software work products that are

developed.

The PSP process model defines five framework activities: Planning, high-level design review,

development and Postmortem.

1. Planning:

 This activity isolates requirements and based on these, develops both size and resource

estimates. Development tasks are identified & a project schedule is created.

2. High – Level Design:

 External Specifications for each component to be constructed are developed and a

component design is created.

3. High – Level Design Review:

 Formal verification methods are applied to uncover errors in the design.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

11

4. Development :

 The component level design is refined and reviewed. Code is generated, reviewed,

complied, and tested. Metrics are maintained for all important tasks and work results.

5. Postmortem :

 Using the measures & metrics collected, the effectiveness of the process is determined.

Measures and metrics should provide guidance for modifying the process to improve its

effectiveness.

Team Software Process(TSP):

The goal of TSP is to build a “Self-directed” project team that organizes itself to produce high-

quantity software. Humphrey defines the following objectives for TSP:

 Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans. These can be pure software teams or integrated product teams (IPT)

of 3 to about 20 engineers.

 Show managers how to coach & motivate their teams and how to help them sustain peak

performance.

 Accelerate software process improvement by making CMM level 5 behavior normal and

expected.

 Provide improvement guidance to high-maturity organizations.

 Facilitate university teaching of industrial-grade team skills.

A self-directed team has a consistent understanding of its overall goals and objectives. To

form a self-directed team, we must collaborate well internally and communicate well

externally.

“Finding good players is easy. Getting them to play a team is another story”.

- Casey Stengel

Like PSP, TSP is a rigorous approach to software engineering that provides distinct and

quantifiable benefits in productivity and quality.

Process Technology:

The generic process models must be adapted for use by a software project team. To

accomplish this, process technology tools have been developed to help software organizations

analyze their current process, organize work tasks, control and monitor progress and manage

technical quantity.

Process technology tools allow a software organization to build an automated model of the

common process framework, task sets and umbrella activities. The model, normally

represented as a network can then be analyzed to determine typical workflow and examine

alternative process structures that might lead to reduced development time or cost.

Once, an acceptable process has been created, other process technology tools can be used to

allocate, monitor and even control all software engineering tasks defined as part of the process

model, to develop a checklist of work tasks to be performed, work products to be produced

and quantity assurance activities to be conducted, to coordinate the use of other computer-

aided software engineering tools that are appropriate for a particular work task.

In some cases, the process technology tools incorporate standard project management tasks

such as estimating, scheduling, tracking and control.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

12

1.8. Prescriptive Process Models:

Irrespective of which level of CMM the organization has, the software engineer has five

choices for selection of software process models.

They are –

1. Waterfall Model

2. Incremental Model

3. RAD Model

4. Prototype Model

5. Spiral Model

1. The Waterfall Model:

There are times when the requirements of a problem are reasonably well understood – when

work flows from communication through deployment in a reasonably linear fashion.

The waterfall model is a traditional method, sometimes called the classic life cycle, suggests a

systematic, sequential approach to software development that begins with customer

specification of requirements and progresses through planning, modeling, construction and

deployment, culminating in on-going support of the completed software.

This is one of the initial models. As the figure implies stages are cascaded and shall be

developed one after the other. In other words one stage should be completed before the other

begins. Hence, when all the requirements are elicited by the customer, analyzed for

completeness and consistency, documented as per requirements, the development and design

activities commence.

This model presents a high level view and suggests to the developer the sequence of events

they should expect to encounter. This model is used to prescribe software development

activities in variety of contexts. It is the basis for software deliverables. Associated with each

activity are milestones and outcomes, for managers to monitor.

One of the main needs of this model is the user’s explicit prescription of complete

requirements at the start of development. For developers it is useful to layout what they need

to do at the initial stages. Its simplicity makes it easy to explain to customers who may not be

aware of software development process. It makes explicit with intermediate products to begin

at every stage of development.

One of the biggest limitation is it does not reflect the way code is really developed.

Problem is well understood but software is developed with great deal of iteration.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

13

Often this is a solution to a problem which was not solved earlier and hence software

developers shall have extensive experience to develop such application; as neither the user nor

the developers are aware of the key factors affecting the desired outcome and the time needed.

Hence at times the software development process may remain uncontrolled.

Today software work is fast paced and subject to a never-ending stream of changes in features,

functions and information content. Waterfall model is inappropriate for such work. This model

is useful in situation were the requirements are fixed and work proceeds to completion in a

linear manner.

Among the problems that are sometimes encountered when the waterfall model is applied are

1. Real projects rarely follow the sequential flow that the model proposes. Although the

linear model can accommodate iteration, it does so directly. As a result, changes can cause

confusion as the project team proceeds.

2. It is often difficult for the customer to state all requirements explicitly. The Waterfall

Model requires this and has difficulty accommodating the natural uncertainty that exists at

the beginning of many projects.

3. The customer must have patience. A working version of the program will not be available

until late in the project time-span. A major blunder, if undetected until the working

program is received, can be disastrous.

The waterfall model is often inappropriate for such work. However, it can serve as a useful

process model in situations where requirements are fixed and work is to proceed to completion

in a linear manner.

2. The Incremental Model:

The incremental model combines elements of the waterfall model applied in an iterative

fashion. The incremental model delivers a series of releases, called increments, that provides

progressively more functionality for the customer at each increment is delivered. In each

increment, additional functions and features are added after confirming the utility of earlier

increments.

In the early years of development users were willing to wait for software projects to be ready.

Today’s business does not tolerate long delays. Software helps to distinguish products in the

market place and customers are always looking for new quality and functions. One of the ways

to reduce time is the phased development. The system is developed such that it can be

delivered in parts enabling the users to have few functions while the rest are being developed.

Thus development and usage will happen in parallel.

In incremental development the system is partitioned into subsystems or increments. The

releases are defined in the beginning with initial function and them adding functionalities with

subsequent releases. Incremented development slowly builds up to full functionality with

subsequent releases.

This model combines the elements of waterfall model in an iterative fashion. The model

applies linear sequences in a staggered manner as the calendar time progresses. In this model

first increment is the core product or primary function. The core product implemented

undergoes detailed evaluation by the user which becomes advantages for future increments.

The feedback also addresses future modifications which are included in the next increments

for additional features and functionality. He process is repeated till delivery of each increment

till the final product is delivered.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

14

This is useful when the software team is smaller in size. Additional increments can be planned

and managed to address technical risks. This has the advantage of prompt system delivery to

users without hassle.

In case of availability of new hardware are delayed and early increments which could be

executed on existing systems for partial functionality to prevent inordinate delays.

From this diagram, the incremental model applies linear sequences in a staggered fashion as

calendar time progresses. Each linear sequence produces deliverable “Increments” of the

software.

For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing and document production functions in the first

increment; more sophisticated editing and document production capabilities in the second

increment; spelling and grammar checking in the third increment; and advanced page layout

capability in the fourth increment.

3. The RAD Model:

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

15

Rapid application Development (RAD) is a modern software process model that emphasizes a

short development cycle. The RAD Model is a “high-speed” adaptation of the waterfall

model, in which rapid development is achieved by using a component based construction

approach. If requirements are well understood and project scope is considered, the RAD

process enables a development team to create a “Fully Functional System” within a very short

period of time (e.g. 60 to 90 days).

One of the distinct features of RAD model is the possibility of cross life cycle activities which

will be assigned to teams, teams #1 to team #n leading to each module getting developed

almost simultaneously.

This approach is very useful if the business application requirements are modularized as

function to be completed by individual teams and finally to integrate into a complete system.

As such compared to waterfall model the team will be of larger size to function with proper

coordination.

RAD model distributes the analysis and construction phases into a series of short iterative

development cycles. The activities of each phase per team are Business modeling, Data

modeling and process modeling.

This model is useful for projects with possibility of modularization. RAD may fail if

modularization is difficult. This model should be used if domain experts are available with

relevant business knowledge.

Communication works to understand the business problem and the information characteristics

that the software must accommodate. Planning is essential because multiple software teams’

work is parallel on different system functions. Modeling encompasses three major phases –

business modeling, data modeling and process modeling- and establishes design

representations that serve as the basis for RAD’s construction activity. Construction

emphasizes the use of pre-existing software components and the application of automatic code

generation. Finally, deployment establishes a basis for subsequent iterations, if required.

Advantages:

1. Changing requirements can be accommodated and progress can be measured.

2. Powerful RAD tools can reduce development time.

3. Productivity with small team in short development time and quick reviews, risk control

increases reusability of components, better quality.

4. Risk of new approach only modularized systems are recommended through RAD.

5. Suitable for scalable component based systems.

Limitations:

1. RAD model success depends on strong technical team expertise and skills.

2. Highly skilled developers needed with modeling skills.

3. User involvement throughout life cycle. If developers & customers are not committed to

the rapid fire activities necessary to complete the System in a much-abbreviated time

frame, RAD projects will fail.

4. May not be appropriate for very large scale systems where the technical risks are high.

The difference between RAD and Incremental model (INM) is that, in RAD the requirement of

the software system is well defined & agreed by all, namely users, customers and stakeholders;

whereas in INM, requirements need to be evolved incrementally to ensure its correctness and

to assure quality. Each increment goes through the core processes from analysis to testing

before it is delivered to the customer.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

16

4. The Prototype Model:

The prototyping paradigm begins with communication as shown in the diagram below.

The software development process can help to control by including activities and sub

processes to enhance understanding. Prototyping is a sub process or a partially developed

product that enable customers and developers to examine aspects of a proposed system and

decide if it is suitable or appropriate for the finished product.

Developers may build a system to implement a small portion of some of the key requirements

to ensure that the requirements are consistent, feasible and practical. In case of changes,

revisions are made at the requirements stage by prototyping parts of the design.

Design prototyping helps the developers assess alternative strategies and decide which best

suits for the project. There may be radically different designs to get best performances. Often

user interface is built and tested as a prototype for users to understand the new system and

developers to get the idea of user’s reaction/response to the system.

In Business needs, requirements change very often making earlier methods unrealistic and

redundant. Short market deadlines make it difficult to complete comprehensive software

products.

The evolutionary models are iterative and help the developers to complete short version within

the given deadlines.

Ideally prototype serves as a mechanism to identify software requirements for working

prototypes. The developer attempts to make use of existing program fragments and applies

tools such as report generators which enable working programs to be generated quickly.

The software engineer & customer meet and define the overall objectives for the software,

identify whatever requirements are known and outline areas where further definition is

mandatory. Prototyping iteration is planned quickly and modeling (in the form of quick

design) occurs. The quick design focuses on a representation of those aspects of the software

that will be visible to the customer/end-user (e.g. human interface layout or output display

formats). The quick design leads to the construction of a prototype. The prototype is

deployed & then evaluated by the customer/user. Feedback is used to refine requirements for

the software.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

17

5. The Spiral Model:

Boehm (1988) viewed the software development process in light of risks involved, Spiral

model could combine development activities with risk management to minimize and control

the risk impact.

This is again an evolutionary model which couples iterative nature of prototyping with

controlled and systematic aspects of the waterfall model. It also provides scope for RAD for

increasingly complete software.

The spiral development model is a risk-driven process model generator that is used to guide

multi-stakeholder concurrent engineering of software intensive systems. It has two main

distinguishing features. One is a cyclic approach for incrementally growing a system’s degree

of definition and implementation while decreasing its degree of risk. The other is a set of

anchor point milestones for ensuring stakeholder commitment to feasible and mutually

satisfactory system solutions.

From the figure given above, a spiral model is divided into a set of framework activities

defined by the software engineering team. As this evolutionary process begins, the software

team performs activities that are implied by a circuit around the spiral in a clockwise direction,

beginning at the center. Risk is considered as each revolution is made. Anchor point

milestones – a combination of work products and conditions that are attained along the path of

the spiral – are noted for each evolutionary pass.

Each pass through the planning region results in adjustments to the project plan. Cost &

schedule are adjusted based on feedback derived from the customer after delivery. In addition,

the project manager adjusts the planned number of iterations required to complete the

software.

The initial circuit around the spiral can be for the concept development and with multiple

iterations. The spiral traverses outward for new product development spiral development

remains operative for the life span of software. This may be a realistic approach for large scale

software development. As the process progresses both users and developers better understand

the system. However the system, demands risks, identification and monitoring to prevent

hurdles.

The spiral model can be adopted to apply throughout the life cycle of an application, from

concept development to maintenance.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

18

1.9. Agile Software Development:

Agile programming is an approach to project management, typically used in software

development. It helps teams react to the instability of building software through incremental,

iterative work cycles, known as sprints.

Features of the Agile Software Development Approach

The name “agile software process”, first originated in Japan. The Japanese faced competitive

pressures, and many of their companies, like their American counterparts, promoted cycle-

time reduction as the most important characteristic of software process improvement efforts

Modularity

Modularity is a key element of any good process. Modularity allows a process to be broken

into components called activities. A software development process prescribes a set of activities

capable of transforming the vision of the software system into reality.

Activities are used in the agile software process like a good tool. They are to be wielded by

software craftsman who know the proper circumstances for their use. They are not utilized to

create a production-line atmosphere for manufacturing software.

Iterative

Agile software processes acknowledge that we get things wrong before we get them right.

Therefore, they focus on short cycles. Within each cycle, a certain set of activities is

completed. These cycles will be started and completed in a matter of weeks. However, a single

cycle (called iteration) will probably not be enough to get the element 100% correct.

Time-Bound

Iterations become the perfect unit for planning the software development project. We can set

time limits (between one and six weeks is normal) on each iteration and schedule them

accordingly. Chances are, we will not (unless the process contains very few activities)

schedule all of the activities of our process in a single iteration. Instead, we will only attempt

those activities necessary to achieve the goals set out at the beginning of the iteration.

Functionality may be reduced or activities may be rescheduled if they cannot be completed

within the allotted time period.

Parsimony

Agile Process is more than a traditional software development process with some time

constraints. Attempting to create impossible deadlines under a process not suited for rapid

delivery puts the onus on the software developers. This leads to burnout and poor quality

Instead, agile software processes focus on parsimony. That is, they require a minimal number

of activities necessary to mitigate risks and achieve their goals.

Adaptive

During an iteration, new risks may be exposed which require some activities that were not

planned. The agile process adapts the process to attack these new found risks. If the goal

cannot be achieved using the activities planned during the iteration, new activities can be

added to allow the goal to be reached. Similarly, activities may be discarded if the risks turn

out to be ungrounded.

Incremental

An agile process does not try to build the entire system at once. Instead, it partitions the

nontrivial system into increments which may be developed in parallel, at different times, and

at different rates. We unit test each increment independently. When an increment is completed

and tested, it is integrated into the system.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

19

Convergent

Convergence states that we are actively attacking all of the risks worth attacking. As a result,

the system becomes closer to the reality that we seek with each iteration. As risks are being

proactively attacked, the system is being delivered in increments. We are doing everything

within our power to ensure success in the most rapid fashion.

People-Oriented

Agile processes favor people over process and technology. They evolve through adaptation in

an organic manner. Developers that are empowered raise their productivity, quality, and

performance.

Collaborative

Agile processes foster communication among team members. Communication is a vital part of

any software development project. When a project is developed in pieces, understanding how

the pieces fit together is vital to creating the finished product. There is more to integration than

simple communication. Quickly integrating a large project while increments are being

developed in parallel requires collaboration.

Concept of Extreme Programming

Extreme Programming is an instance of an Agile Software Development method. XP is a

method that is optimized for small to medium-sized project teams that fit a certain profile. It

promotes rapid feedback and response to continual change. It is based upon the four values of

simplicity, communication, feedback, and courage and is consistent with the values of agile

software development.

Characteristics of an XP Project

Extreme Programming or XP is a development process that can be used by small to medium-

sized teams to develop high quality software within a predictable schedule and budget and

with a minimum of overhead. Since XP relies heavily on direct and frequent communication

between the team members, the team should be co-located. An ideal project for using XP

would be one that has most of the following characteristics:

 A small to medium-sized team (fewer than 20 people on the complete team)

 Co-located, preferably in a single area with a large common space

 A committed, full-time, on-site customer or customer representative

The Extreme Programming Process

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

20

Goals

Extreme Programming Explained describes Extreme Programming as a software-development

discipline that organizes people to produce higher-quality software more productively.

XP attempts to reduce the cost of changes in requirements by having multiple short

development cycles, rather than a long one. In this doctrine, changes are a natural, inescapable

and desirable aspect of software-development projects, and should be planned for, instead of

attempting to define a stable set of requirements.

Extreme programming also introduces a number of basic values, principles and practices on

top of the agile programming framework.

Activities

XP describes four basic activities that are performed within the software development process:

coding, testing, listening, and designing. Each of those activities is described below.

Coding

The advocates of XP argue that the only truly important product of the system development

process is code – software instructions that a computer can interpret. Without code, there is no

working product.

Coding can also be used to figure out the most suitable solution. Coding can also help to

communicate thoughts about programming problems. A programmer dealing with a complex

programming problem, or finding it hard to explain the solution to fellow programmers, might

code it in a simplified manner and use the code to demonstrate what he or she means. Code,

say the proponents of this position, is always clear and concise and cannot be interpreted in

more than one way. Other programmers can give feedback on this code by also coding their

thoughts.

Testing

Main article: Test-driven development

Extreme programming's approach is that if a little testing can eliminate a few flaws, a lot of

testing can eliminate many more flaws.

Unit tests determine whether a given feature works as intended. A programmer writes as many

automated tests as they can think of that might "break" the code; if all tests run successfully,

then the coding is complete. Every piece of code that is written is tested before moving on to

the next feature.

Acceptance tests verify that the requirements as understood by the programmers satisfy the

customer's actual requirements.

System-wide integration testing was encouraged, initially, as a daily end-of-day activity, for

early detection of incompatible interfaces, to reconnect before the separate sections diverged

widely from coherent functionality. However, system-wide integration testing has been

reduced, to weekly, or less often, depending on the stability of the overall interfaces in the

system.

Listening

Programmers must listen to what the customers need the system to do, what "business logic" is

needed. They must understand these needs well enough to give the customer feedback about

the technical aspects of how the problem might be solved, or cannot be solved.

Communication between the customer and programmer is further addressed in the Planning

Game.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

21

Designing

From the point of view of simplicity, of course one could say that system development doesn't

need more than coding, testing and listening. If those activities are performed well, the result

should always be a system that works. In practice, this will not work. One can come a long

way without designing but at a given time one will get stuck. The system becomes too

complex and the dependencies within the system cease to be clear. One can avoid this by

creating a design structure that organizes the logic in the system. Good design will avoid lots

of dependencies within a system; this means that changing one part of the system will not

affect other parts of the system.

Question Bank

1. Define Software, Software Engineering, and Process Technology. 4 Marks

2. State four characteristics of software. 4 Marks

3. Explain and differentiate between hardware and software. 4 Marks

4. State and explain with examples seven broad categories of software.

(Changing nature of software). 4 Marks

5. Explain Software engineering, System Engineering and their relationship. 4 Marks

6. Explain Software Engineering as layered technology approach. 4 Marks

7. Using schematic diagram explain software process framework. 4 Marks

8. State and explain in brief generic process framework activities. 4 Marks

9. Explain PSP. 4 Marks

10. Explain TSP. 4 Marks

11. State and Explain Waterfall process model with their advantages and 4 Marks

 limitations.

12. State and Explain RAD process model with their advantages and 4 Marks

limitations.

13. State and Explain Incremental process model with their advantages and 4 Marks

limitations.

14. State and Explain Prototype process model with their advantages and 4 Marks

limitations.

15. State and Explain Spiral process model with their advantages and 4 Marks

limitations.

16. Define four attributes of good software. 4 Marks

17. State features of Agile Software development. 4 Marks

18. Explain concept of Extreme Programming (XP). 4 Marks

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

22

2. Chapter 2

Software Engineering Practices And Software Requirements Engineering

2.1. Software Engineering Practices – Definition, Importance, Essence

Software Engineering Practice:

 Software engineering deals with processes to ensure delivery of the software through

management control of development process and production of requirement analysis

models, data models process models, information products, reports and software

documentation.

 Software Engineering practices consist of collection of concepts, principles, methods and

tools that a software engineer calls upon on a daily basis.

 It equips managers to manage software projects and software engineers to build computer

programs.

 Provides necessary technical and management know-how for getting the job done.

 Transforms a haphazard, unfocused approach into something that is more organized, more

effective and more likely to achieve success.

Importance of Software Engineering practices:

The software engineering considers various issues like hardware platform, performance,

scalability and upgrades.

The Essence of software engineering practices:

The essence includes understanding the problem, planning a solution, carrying out the plan

and examining the results for accuracy.

1. Understand the problem (communication and analysis)

 Who has a stake in the solution to the problem?

 What are the unknowns (data, function, behavior)?

 Can the problem be compartmentalized?

 Can the problem be represented graphically?

2. Plan a solution (planning, modeling and software design)

 Have you seen similar problems like this before?

 Has a similar problem been solved and is the solution reusable?

 Can sub problems be defined and are solutions available for the sub problems?

3. Carry out the plan: The design you’ve created serves as road map for the system you want

to build. (Construction, Code generation)

 Does the solution conform to the plan? Is source code traceable to the design model?

 Is each component part of the solution probably correct? Have the design and code

been reviewed or have correctness proofs been applied to the algorithm?

4. Examine the result for accuracy (testing and quality assurance)

 Is it possible to test each component part of the solution?

 Does the solution produce results that conform to the data, functions and features that

are required? Has the software been validated against all stakeholder requirements?

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

23

2.2. Core Principles of Software Engineering (Statements & Meaning of each Principle)

1. The reason it all exists:

The software system exists in the organization for providing value to its users with, the

availability of hardware and software requirements. Hence all the decisions should be

made by keeping this in mind.

2. Keep it Simple, Stupid (KISS)

Software design is not a haphazard process. There are many factors considered in the

design effort. The design should be straight forward and as simple as possible. This

facilitates having a system which can be easily understood and easy to maintain.

Simple doesn’t mean quick and dirty. In fact, it requires lot of thought and effort to

simplify multiple iterations of a complex task. This results in the advantage that the

software is less error prone and easily maintainable.

3. Maintain the vision

A clear vision is essential for the success of a software project. If the vision is missing, the

project may end up of two or more minds. The team leader has a critical role to play for

maintaining the vision and enforce compliance with the help of the team members.

4. What you produce, others will consume

The design and implementation should be done by keeping in mind the user’s

requirements. The code should permit the system extension. Some other programmers

debugging the code should not have any errors and satisfying all the user needs.

5. Be open to future

The system with the long lifetime has more value. The industry standard software systems

induce for longer. The system should be ready to accept and adapt to new changes. The

systems which are designed by keeping in mind the future needs will be more successful

and acceptable to the users.

6. Plan ahead for reuse

Reuse saves time and efforts. The reuse of code and design is one of the advantages of

object oriented technologies. The reuse of parts of the code helps in reducing the cost and

time evolved, in the new software development.

7. Think

Placing clear and complete thought before action almost always produces better results.

With proper thinking, we are most likely to do it right. We also gain knowledge about how

to do it right again. It becomes a valuable experience, even if something goes wrong, as

there was adequate thought process. Hence when clear thought has gone into the system,

value comes out, this provides potential rewards.

2.3. Communication Practices (Concept, Need of communication, Statements and Meaning of

each Principle)

Effective communication among the technical peers, customers and other stakeholders, project

managers etc. is among the most challenging activities that confront software engineers.

Before customers’ requirements can be analyzed, modeled are specified they must be gathered

through a communication.

Effective communication is among the most challenging activities that you will confront.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

24

Communication Principles are

1. Listen: Try to focus on the speakers words, rather than formulating your response to those

words. Ask for clarification if something is unclear, but avoid constant interruptions.

2. Prepare before you communicate: Speed the time to understand the problem before you

meet with others. If necessary, do some research to understand business domain jargon.

3. Someone should facilitate the activity: Every communication meeting should have a

leader to keep the conversation moving in a productive direction, to mediate any conflict

that does occur and to ensure than other principles are followed.

4. Face-to Face communication is best: It usually works better when some other

representation of the relevant information is present. For eg. A participant may create a

drawing or a “strawman” document that serves as a focus for discussion.

5. Take notes and document decisions: Things have a way of falling into cracks. Someone

participating in the communication should serve as a “recorder” and write down all

important points and decisions.

6. Strive for collaboration : Collaboration and consensus occur when the collective

knowledge of members of the team is used to describe product or system functions or

features. Each small collaboration serves to build trust among team members and creates a

common goal for the team.

7. Stay focused; modularize your discussion: The more likely involved in any

communication, the more likely that discussion will bounce from one topic to next. The

facilitator should keep the conversation modular; leaving one topic only after it has been

resolved.

8. If something is unclear, draw a picture: Verbal communication goes only so far. A

sketch or drawing can often provide clarity when words fail to do the job.

9. A) Once you agree to something, move on. B) If you can’t agree to something, move

on C) If a feature or function is unclear and cannot be clarified at the moment, move

on. : Communication, like any software engineering activity, takes time. Rather than

iterating endlessly the people who participates should recognize that many topics require

discussion and that “moving on” is sometimes the best the best way to achieve

communication agility.

10. Negotiation is not a contest or a game. It works best when both parties win: There are

many instances in which you and other stakeholders must negotiate functions and features,

priorities, and delivery dates. If the team has collaborated well, all parties have a common

goal. Still, negotiation will demand compromise from all parties.

2.4. Planning Practices (Concept, Need of planning, basic activities included, statements and

meaning of each principle.)

The planning activity encompasses of a set of management and technical practices that enable

the software team to define a road map as it travels towards its strategic goals and tactical

objectives. Like most things in life, planning should be conducted in moderation enough to

provide useful guidance to the team.

Planning Principles:

1. Understand the scope of the project: It’s impossible to use a road map if you don’t know

where you are going. Scope provides the software team with a destination.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

25

2. Involve stakeholders in the planning activity: Stakeholders define priorities and

establish project constraints. To accommodate these realities, software engineers must

often negotiate order of delivery, timelines and other project related issues.

3. Recognize that the planning is iterative: When the project work begins it’s likely that

few things may change. To accommodate these changes the plan must be adjusted, as a

consequence. The iterative and incremental may dictate replanning based on the feedback

received from users.

4. Estimate based on what you know: The purpose of estimation is to provide an indication

of the efforts, cost, task duration and skillsets based on the team’s current understanding of

the work and past experience. If the information is vague or unreliable estimates will be

equally unreliable.

5. Consider the risk as you define the plan: The team should define the risks of high

impact and high probability. It should also provide contingency plan if the risks become a

reality. The project plan should be adjusted to accommodate the likelihood of the risks.

6. Be realistic: The realistic plan helps in completing the project on time including the

inefficiencies and change. Even the best software engineers commit mistakes and then

correct them. Such realities should be considered while establishing a project plan.

7. Adjust granularity as you define the plan: Granularity refers to the level of details that

is introduced as a project plan is developed. It is the representation of the system from

macro to micro level. A “high-granularity” plan provides significant work task detail that

is planned over relatively short time increments. A “low-granularity” plan provides

broader work tasks that are planned over longer time periods. In general, granularity moves

from high to low as the project time line moves away from the current date.

8. Define how do you intend to ensure quality: The plan should identify how the software

team intends to ensure quality. If technical reviews are to be conducted, they should be

scheduled.

9. Describe how you intend to accommodate change: Even the best planning can be

obviated by uncontrolled change. The software team should identify how the changes are

to be accommodated as the software engineering work proceeds. If a change is requested,

the team may decide on the possibility of implementing the changes or suggest

alternatives. The team should also access the impact of change on the development process

and the changes in cost.

10. Track and monitor the plan frequently and make adjustments if required: Software

projects fall behind schedule one day at a time. Therefore, make sense to track progress on

a daily basis, looking for problem areas and situations in which scheduled work does not

conform to actual work conducted. When shippage is encountered, the plan is adjusted

accordingly.

The W5HH Principle:

Barry Boehm suggest an approach that addresses project objectives, milestones and schedules,

responsibilities, management and technical approaches, and required resources. He calls it the

W5HH principle, which includes a series of questions:

 Why is the system being developed?

 What will be done?

 When will it be accomplished?

 Who is responsible for a function?

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

26

 Where they are organizationally located?

 How will the job be done technically and managerially?

 How much of each resource is needed?

“We think that software developers are missing a vital truth: most organizations don’t know what

they do. They think they know, but they don’t know”.

2.5. Modeling Principles

Concept of Software Modeling

In software engineering designers create models to gain a better understanding of the actual

entity to be built. When the entity is a physical thing, such as machine, we can build a model

that is identical in form and shape but smaller in scale. However, when the entity to be built is

software, the model must take a different form. The model must be capable of representing the

information that the software transforms, the architecture and functions that enable the

transformation to occur, the features that the user desires and the behavior of the system as the

transformation is taking place. The models must accomplish these objectives at different levels

of abstraction. Initially the system is represented by depicting the software from the

customer’s point of view (Analysis model). The later the system is represented at a more

technical level providing concrete specification for the construction of the software (Design

model). The Design model represents the characteristics of the software which help the

professionals to construct the software effectively.

In software engineer work, two classes of models are created:

Analysis Models

Design Models

Analysis Models represent the customer requirements by depicting the software in three

domains

The information domain

The functional domain

The behavioral domain

Analysis models represent customer requirements

Design models provide a concrete specification for the construction of the software. It

represents characteristics of the software that help practitioners to construct it effectively.

The architecture

The user interface

And component – level detail

The engineer’s first problem in any design situation is to discover what the problem really is”.

Analysis Modelling Principles:

Requirement models (also called analysis models) represent customer requirements by

depicting the software three different domains: the information domain, the functional domain

and the behavioral domain.

1. The information domain of a problem must be represented and understood

The information domain encompasses the data that flow into the system from end users, other

systems or external devices, the data that flow out the system via the user interface, network

interfaces, reports, graphics, and other means and the data stores that collect and organize

persistent data objects i.e. data that are maintained permanently.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

27

2. The functions that the software performs must be defined.

Software functions provide direct benefit to end users and also provide internal support for

those features that are user visible. Some functions transform data that flow into the system. In

other cases, functions affect some level of control over internal software processing or external

system elements. Functions can be described at many different levels of abstraction.

3. The behavior of the software (as a consequence of external events) must be represented)

The behavior of computer software is driven by its interaction with the external environment.

Input provided by end users, control data provided by an external system, or monitoring data

collected over a network all cause the software to behave in a specific way.

4. The models that depict information function and behavior must be partitioned in a

manner that uncovers detail in a layered fashion.

Requirements modeling are the first step in software engineering problem solving. It allows

you to better understand the problem and establishes a basis for the solution (design). Complex

problems are difficult to solve in their entirely.

5. The analysis task should move from essential information toward implementation detail.

Requirements modeling begin by describing the problem from the end-user’s perspective. The

“essence” of the problem is described without any consideration of how a solution will be

implemented. For example, a video game requires that the player “instruct” its protagonist on

what direction to proceed as she moves into a dangerous maze. Implementation detail indicates

how the essence will be implemented.

Design Modeling Principles: The software design model is similar to the architect’s plan or

drawing for a house. It begins by representing the totality of the thing to be built and slowly

refines the thing to provide guidance for constructing each detail. The design model created for

the software provides variety of views of the system.

“See first that the design is wise and just that ascertained, purpose it resolutely; do not for one

repulse forego the purpose that you resolved to effect.”

– William Shakespear

The principles are:

1. Design should be traceable to the requirements model.

The design model should translate the information into architecture; a set of subsystems which

implement major functions and a set of component level designs are the realization of the

analysis classes.

2. Always consider the architecture of the system to be built

Software architecture is the skeleton of the system to be built. It affects interfaces, data

structures, program control flow and behavior, the manner in which testing can be conducted,

the maintainability of the resultant system.

3. Design of data is as important as design of processing functions

The data design is an essential element of architectural design. The manner in which data

objects are realized within the design cannot be left to chance. A well-structured data design

helps to simplify program flow, makes the design and implementation of software components

easier, and makes overall processing more efficient.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

28

4. Interfaces (both internal and external) must be designed with care

The manner in which data flows between the components of a system has much to do with

processing efficiency, error propagation, and design simplicity. A well-designed interface

makes integration easier and assists the tester in validating component functions.

5. User interface design should be tuned to the needs of the end user. However, in every

case, it should stress case of use.

The user interface is the visible manifestation of the software. No matter how sophisticated its

internal functions, no matter how comprehensive its data structures, no matter how well

designed its architecture, a poor interface design often leads to the perception that the software

is “bad”.

6. Component-level design should be functionally independent,

Functional independence is a measure of the “Single-mindedness” of a software component.

The functionality that is delivered by a component should be cohesive-that is, it should focus

on one and only one function or sub function.

7. Components should be loosely coupled to one another and to the external environment.

Coupling is achieved in many ways- via a component interface, be messaging, through global

data. As the level of coupling increases, the likelihood of error propagation also increases and

the overall maintainability of the software decreases. Therefore, component coupling should

be kept as low as is reasonable.

8. Design representations(models) should be easily understandable

The purpose of design is to communicate information to practioners who will generate code, to

those who will test the software, and to others who may maintain the software in the future. If

the design is difficult to understand, it will not serve as an effective communication medium.

9. The design should be developed iteratively. With each iteration, the designer should

strive for greater simplicity

Like almost all creative activities, design occurs iteratively. The first iterations work to refine

the design and correct errors, but later iterations should strive to make the design as simple as

is possible.

2.6. Construction Practices

The construction activity encompasses a set of coding and testing tasks that lead to operational

software that is ready for delivery to the customer or the end user.

Even the software development process has undergone a radical change over the years.

In the model software engineering work the coding may be:

1. The direct creation of source code using a programming language.

2. Automatic generation of source code using an intermediates design like representation of

the components to be built.

3. Automatic generation of executable code using 4GL language

Coding Principles and concept

The principle and concept that guide the coding task are closely aligned programming style,

programming language, and programming methods. However, there are a number of fundamental

principles that can be stated.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

29

Preparation Principles:

Before you write one line of code, be sure you

1. Understand of the problem you’re trying to solve

2. Understand basic design principles and concepts

3. Pick a programming language that meets the needs of the software to be built and the

environment in which it will operate

4. Select a programming environment that provides tools that will make your work easier

5. Create a set of unit tests that will be applied once the component you code is completed

Coding Principles:

1. As you begin writing code, be sure you:

2. Constrain your algorithms by following structured programming practice.

3. Consider the sue of pair programming

4. Select data structures that will meet the needs of the design

5. Understand the software architecture and create interfaces that are consistent with it.

6. Keep conditional logic as simple as possible.

7. Create nested loops in a way that makes theme easily testable.

8. Select meaningful variable names and follow other local coding standards

9. Write code that is self-documenting

10. Create a visual layout that aids understanding

Validation Principles: After you’ve completed your first coding pass, be sure you

1. Conduct a code walkthrough when appropriate

2. Perform unit tests and correct errors you’ve uncovered

3. Refactor the code

Testing principles and concept:

In a classic book on software testing, Glen Mysers states a number of rules that can serve well as

testing objectives:

Testing is a process of executing a program with the intent of finding an error.

A good “test-case” is the highest probability of finding an “as-yet undiscovered errors”.

A successful test is a one which uncovers an as-yet undiscovered errors

Davis suggests a set of testing principles as follows:

1. All tests should be traceable to customer requirements.

The objective of software testing is to uncover errors. It follows that the most server defects

from the users point of view are those that cause the program to fail to meet its requirement.

2. Tests should be planned long before testing begins

Test planning can begin as soon as the requirements model is complete. Detailed definition of

test cases can begin as soon as the design model has been solidified. Therefore, all tests can be

planned and designed before any code has been generated.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

30

3. The Pareto principle applies to software testing

In this context the Pareto principle implies that 80 percent of all errors uncovered during

testing will likely be traceable to 20 percent of all program components. The problem, of

course, is to isolate these suspect components and to thoroughly test them.

4. Testing should begin “in a small” and progress toward testing “in the large”

The initial testing should be on small individual components. As testing progresses, focus

shifts to find errors in integrated clusters of programs ans finally in the entire system.

5. Exhaustive testing is not possible

It may be noted that the number of path permutations for even a moderately sized program is

exceptionally large. Hence for this reason it is impossible to execute every combination of the

paths during testing.

2.7. Software Deployment

The deployment phase includes 3 actions namely 1. Delivery 2. Support 3. Feedback

1. The delivery cycle provides the customer and the end user with an operational software

increment that provides usable functions and features.

2. The support cycle provides documentation, human assistance for all functions and features

introduced during all deployment cycles to date.

3. Each feedback cycle provides the software team with useful inputs. The feedback can help

in modifications to the functions, features and even the approach for the next increments.

The delivery of the software increment is an important milestone of any software project. A

number of key principles should be followed as the team prepares to deliver an increment.

1. Customer expectations for the software must be managed

 Before the software delivery the project team should ensure that all the requirements of the

users are satisfied.

2. A complete delivery package should be assembled and tested

 The system containing all executable software, support data files, tools and support

documents should be provided with beta testing at the actual user side.

3. A support regime must be established before the software is delivered

 This includes assigning the responsibility to the team members to provide support to the

users in case of problem.

4. Appropriate instructional materials must be provided to end users

 At the end of construction various documents such as technical manual, operations manual,

user training manual, user reference manual should be kept ready. These documents will

help in providing proper understanding and assistance to the user.

5. Buggy software should be fixed first, delivered later.

 Sometimes under time pressure, the software delivers low-quality increments with a

warning to the customer that bugs will be fixed in the next release. Customers will forget

you delivered a high-quality product a few days late, but they will never forget the

problems that a low quality product caused them. The software reminds them every day.

2.8. Requirements Engineering

Requirement Engineering helps software engineers to better understand the problem they will

work to solve. It includes the set of tasks that lead to an understanding of:

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

31

1. What will be business impact of the software?

2. What the customer wants exactly?

3. How end user will interact with the system software engineering and other project

stakeholders all participate.

1. Inception

Inception means beginning. It is always problematic to the developer that from where to

start.

The customer and developer meet and they decide overall scope and nature of the problem.

The aim is

1. To have the basic understanding of problem

2. To know the people who will use the software

3. To know exact nature of problem.

2. Elicitation

Elicitation means to draw out the truth or reply from anybody. In relation with requirement

engineering, elicitation is a task that helps the customer to define what is required. To

know the objectives of the system to be developed is a critical job.

a. Problem of Scope:

The boundary of the system is ill-defined or the customers/users specify unnecessary

technical detail that may confuse, rather than clarify, overall system objectives.

b. Problem of understanding

 Sometimes both customer as well as developer has poor understanding of

 What is needed?

 Capabilities and limitations of the computing environment.

c. Problems of volatility

Volatility means change from one state to another. The customer’s requirement may

change time to time.

3. Elaboration

Elaboration means to work out in detail. The information obtained during inception and

elicitation is expanded and modified during elaboration. Requirement engineering activity

focuses on developing the technical model of the software that will include:

1. Functions

2. Features

3. Constraints

This is an analysis modeling action. It focuses on “How end users will interact with

system”.

4. Negotiation

It means discussion on financial and other commercial issues.

In this step customer, user and stakeholder discuss to decode:

 To rank the requirements

 To decide priorities

 To decide risks

 To finalize the project cost

 Impact of above on cost and delivery

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

32

5. Specification

The specification is the final work product produced by requirement engineer. The

specification may take different forms: A written document, a set of graphical model, a

collection of scenarios, a prototype, Mathematical model. It serves as the foundation for

subsequent software engineering activities. It describes the function, performance of a

computer-based-system, constraints that will govern its development.

6. Validation

Products are assessed for quality during validation period. Inconsistencies, omission, errors

are detected and corrected. Work products conform to the standards established for the

process, the project and the product. Clarification related to conflicting requirements,

unrealistic expectations, etc.

7. Requirements management

Helps the project team identify, control and track requirements and changes to

requirements at any time of the project proceeds.

Source traceability table – stakeholders, recognize multiple viewpoint

Dependency traceability table – work towards collaboration asking for questions

Subsystem traceability table

Interface traceability table.

2.9. SRS (Software Requirements Specifications)

A Software requirements specification (SRS), a requirements specification for a software

system, is a description of the behavior of a system to be developed and may include a set of

use cases that describe interactions the users will have with the software. In addition it also

contains non-functional requirements. Non-functional requirements impose constraints on the

design or implementation (such as performance engineering requirements, quality standards,

or design constraints)

Software requirements specification establishes the basis for agreement between customers

and contractors or suppliers (in market-driven projects, these roles may be played by the

marketing and development divisions) on what the software product is to do as well as what it

is not expected to do. Software requirements specification permits a rigorous assessment of

requirements before design can begin and reduces later redesign. It should also provide a

realistic basis for estimating product costs, risks, and schedules.

The software requirements specification document enlists enough and necessary requirements

that are required for the project development. To derive the requirements we need to have

clear and thorough understanding of the products to be developed or being developed. This is

achieved and refined with detailed and continuous communications with the project team and

customer till the completion of the software.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

33

Question Bank

1. Define SE practices, its importance. 3 Marks

2. Staff briefly essence of SE Practices. 4 Marks

3. State and describe Seven core Principles of software Engineering 4 Marks

4. State and explain the communication Principles 8 Marks

5. State and explain eight planning Principle 8 Marks

6. Briefly explain Barry Boehm’s W5HH Principle. 4 Marks

7. Explain five Analysis modeling Principles. 4 Marks

8. Explain eight design modeling Principles. 8 Marks

9. Write a note on Construction practices 3 Marks

10. Explain preparation, Coding & Validation Principles. 8 Marks

11. State five set of S/W testing Principles. 4 Marks

12. Explain S/W Deployment phases and state five principles. 8 Marks

13. State and explain Seven RE tasks. 8 Marks

14. Define SRS and give its contents. 8 Marks

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

34

3. Chapter 3

Analysis and Design Modeling

3.1. Analysis Modeling

The analysis model and requirements specification provide a means for assessing quality once

the software is built.

Requirements analysis results in the specification of software’s operational characteristics.

The analysis model as a bridge between the system description and the design model.

Objectives

Analysis model must achieve three primary objectives:

Describe customer needs

Establish a basis for software design

Define a set of requirements that can be validated once the software is built.

3.2. Analysis Rules of Thumb

 The model should focus on requirements that are visible within the problem or business

domain. The level of abstraction should be relatively high.

 Each element of the analysis model should add to overall understanding of software

requirements and provide insight into the information, function, and behavior domains of

the system.

 Delay consideration of infrastructure and other non-functional models until design.

 For example, a database may be required, but the classes necessary to implement it, the

functions required to access it, and the behavior that will be exhibited as it is used

should be considered only after problem domain analysis has been completed.

 Minimize coupling throughout the system.

 The level of interconnectedness between classes and functions should be reduced to a

minimum.

 Be certain that the analysis model provides value to all stakeholders.

 Each constituent has its own use for the model.

 Keep the model as simple as it can be.

 Ex: Don't add additional diagrams when they provide no new information.

 Only modeling elements that have values should be implemented.

System

description

Design

model

Analysis

Model

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

35

3.3. Domain Analysis

Meaning

Software domain analysis is the identification, analysis and specification of common

requirements from a specific application domain, typically for reuse in multiple projects within

that application domain.

Object-oriented domain analysis is the identification, analysis and specification of common,

reusable capabilities within a specific application domain, in terms of common objects,

classes, subassemblies, and frameworks.

Example of Domain

The specific application domain can range from avionics to banking, from multimedia video

game to software embedded within medical devices.

Goal

To find or create analysis classes and/or common functions those are broadly applicable, so

that they may be reused.

Input and Output of Domain Analysis

Input and Output for Domain Analysis

The role of domain analyst is to discover and define reusable analysis patterns, analysis classes

and related information that may be used by many people working on similar but not

necessarily the same applications.

Analysis Modeling Approaches

Structured Analysis

Structured Analysis considers data and the process that transform the data as separate entities.

Data objects are modeled in a way that defines their attributes and relationships. Processes that

manipulate the data objects are modeled in a manner that shows how they transform data as

data objects flow through the system.

Structured Analysis

Analysis Modeling Approaches

Object Oriented Analysis

Current/future requirements

Technical literature

Sources of

Domain

Knowledge

Domain

Analysis

Domain

analysis

Model

Existing applications

Customer surveys

Expert advice

Class taxonomies

Reuse standards

Functional models

Domain languages

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

36

Object- oriented Analysis

Object-oriented Analysis focuses on the definition of classes and the manner in which they

collaborate with one another to effect customer requirements.

Elements of the analysis model

The intent is to define all classes, relationship, behavior associated with them, that are relevant

to the problem to be solved. To achieve this following task should occur.

Task 1. Basic user requirements must be communicated between user and developer.

Task 2. Classes must be identified (i.e. attributes, methods defined)

Task 3. A class hierarchy is defined

Task 4. Object- object relationships (object connection) should be represented.

Task 5. Object behavior must be modeled.

Task 6.Task-1 to Task-5 is reapplied iteratively till model is complete.

3.4. Building the Analysis Model

 Data Modeling Concepts

Analysis modeling often begins with data modeling. The software engineer or analyst

defines all data objects that are processed within the system, the relationships between the

data objects, and other information that is pertinent to the relationships.

 Data Objects

A Data object is a representation of any composite information that must be understood by

the software. A data object can be an external entity, a thing, an occurrence of event, a

role, a unit, a place, a structure etc. A person or a car can be viewed as a data object in the

sense that either can be defined in terms of a set of attributes. In a data object i.e.

Analysis Model

Use-cases- text

Use-case diagrams

Activity diagrams

Swim lane diagrams

Scenario- based

elements

Data Flow diagrams

Control-flow diagrams

Processing narratives

Flow-Oriented

elements

Class diagrams

Analysis packages

CRC models

Collaboration diagrams

Class - based

elements

State diagrams

Sequence diagrams

Behavioral

 elements

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

37

encapsulated data only – there is no reference within a data object to operations that act on

the data. The data object can be represented in a table as given below.

Make Model ID# Body type Color Owner

The body of the table represents specific instances of the data object.

 Data Attributes

1. These define the properties of data object and take on one of three different

characteristics

2. Name an instance of the data object

3. Describe the instance

4. Make reference to another instance in another table

5. Attributes may be car, id-number, body type, colour etc.

 Data relationships

Data objects are connected with each other in different ways. The connection established

between two objects because they are related. The relationships define relevant connection

between two objects.

 Cardinality and Modality with example

 Cardinality

Cardinality is the specification of the number of occurrences of one [object] that can be

related to the number of occurrences of another [object]

Cardinality is usually expressed as simply ‘one’ or ‘many’ ie 1:1 or 1:N or M:N

It also defines the max no. of objects that can participate in a relationship

 Modality

Cardinality does not however indicate whether or not a particular data object must

participate in the relationship. To specify this information, the data model adds modality to

the object/relationship pair.

The modality of a relationship is 0 if there is no explicit need for the relationship to occur

or the relationship is optional.

The modality is 1 if an occurrence of the relationship is mandatory.

Identifier
Descriptive

Attributes
Referential

Attributes

Naming attributes

Student Book Student Book

Connection Relationship

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

38

Example

Consider software that is used by a local telephone company to process requests for field service.

A customer indicates that there is a problem. If the problem is diagnosed as relatively simple, a

single repair action occurs. However, if the problem is complex, multiple repair actions may be

required.

Following figure illustrates the relationship, cardinality and modality between the data objects

customer and repair action.

 Flow Oriented Modeling- DFD

A Data Flow Diagram (DFD) is a graphical representation that depicts the information

flow and the processes used for transformation as the data moves from input to output.

Use

The data flow diagram may be used to represent a system or software at any level of

abstraction.

DFD provides a mechanism for functional modeling as well as information flow modeling.

A DFD shows what kinds of data will be input to and output from the system, where the

data will come from and go to, and where the data will be stored.

It does not provide information about the timing of processes, or information about

whether processes will operate in sequence or in parallel (which is shown in a flowchart).

Standard Notations

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

39

 A circle (bubble) represents a process or transformation which is applied to data (or

control).

 The double line represents a data store - information that is used by the software.

 An arrow represents one or more data items (data objects). All arrows on a data flow

diagram should be labeled.

Rules followed for preparing a Data Flow Diagram.

The level 0 data flow diagram (Context Diagram) should depict the software/system as a

single bubble. For any application before drawing the detailed DFD, context diagram

should be drawn.

1. Primary input and output should be carefully noted.

2. All arrows and bubbles should be labeled with meaningful names.

3. Information flow continuity must be maintained from level-to-level.

4. One bubble at a time should be refined.

5. Refinement should begin by isolating candidate processes, data objects, and data stores

to be represented at the next level.

Safe Home Application

SafeHome software enables the homeowner to configure the security system when it is

installed, monitors all sensors connected to the security system, and interacts with the

homeowner through a keypad and function keys contained in the SafeHome control panel.

During installation, the SafeHome control panel is used to “program” and configure the

system. Each sensor is assigned a number and type, a master password is programmed for

arming and disarming the system, and telephone numbers are input for dialing when a sensor

event occurs.

When a sensor event is recognized, the software invokes an audible alarm attached to the

system. After a delay time that is specified by the homeowner during system configuration

activities, the software dials a telephone number of monitoring service, provides information

about the location, reporting the nature of the event that has been detected. The telephone

number of a monitoring service, provides information about the location, reporting the nature

of the event that has been detected. The telephone number will be redialed every 20 seconds

until telephone connection is obtained. All interaction with SafeHome is managed by a user

interaction subsystem that reads input provided through the keypad and function keys, displays

prompting messages on the LCD display.

Level 0 DFD for the SafeHome security function

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

40

Level 1 DFD for the SafeHome security function

Level 2 DFD that refines the monitor sensors transform

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

41

Examples:

DFD for Bank Account

DFD for Payroll System

Data Dictionary (DD)

Meaning

Data dictionary is a repository of data. It stores all the details about data stores and the pointers

to original data objects. It is mainly used as tool in the category of Structured Analysis. It is

used as a central database for the description of all data objects. Once entries in this dictionary

are defined, entity-relationship diagrams can be created and object hierarchies can be

developed. Data flow diagramming features allow easy creation of this graphical model and

provide features for the creation PSPECs and CSPECs.

The analysis model encompasses representations of data objects, function, and control. In each

representation data objects and/or control items play a role. Therefore, it is necessary to

provide an organized approach for representing the characteristics of each data object and

control item. This is accomplished with the data dictionary.

Cheque/

Withdrawal

Slip

New

Balance

Balance
Current

Balance

Withdraw

acknowledge

Valid

Balance

Account

Holder

Verify

A/c

balance

Debit

Withdr

awal

Amoun

t

Account

Holder

Account Master

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

42

Data dictionary is a set of meta-data which contains the definition and representation of data

elements.

Use

It gives a single point of reference of data repository of an organization. Data dictionary lists

all data elements but does not say anything about relationships between data elements.

A database contains information about entities of interest to users in an organization.

When created, the database itself becomes an “entity” about which information must be kept

for various data administration purposes.

Contents incorporated

Today, the data dictionary is always implemented as part of a Computer Aided Software

Engineering (“CASE”) structured analysis and design tool. Although the format of dictionaries

vary from tool to tool, most contain the following information:

 Name-the primary name of the data or control item, the data store or an external entity.

 Alias- other names used for the first entry.

 Where- used/how-used-a listing of the processes that use the data or control item and how

it is used (e.g., input to the process, output from the process, as a store, as an external

entity.

 Content description : a notation for representing content.

 Supplement information-other information about data types, preset values (if known),

restrictions or limitations, and so forth.

Data dictionary (or system catalog) is database about the database.DD can be updated, queried

much as a “regular” database. DBMS often maintains the DD.

Advantages of Data Dictionary

 Provides a summary of the structure of the database

 Helps DBA manage the database

 Informs users of database scope

 Facilitates communication between users and database administration

 Allows the DBMS to manage the creation, access, and modification of tables and their

components

Creating a Control Flow Model

DFD is essential for meaningful insight into software requirements. Large-class applications

are driven by events rather than data. They produce control information, process information

with heavy concern for time and performance. Such applications require the use of control

flow modeling in addition to data flow modeling.

1. List all sensors that are read by the software.

2. List all interrupt conditions

3. List all switches that are activated by actuators.

4. List all data conditions

5. Review all ‘control items’ as possible for control flow input/output

6. Describe the behavior of a system by identifying its states, identify each state is reached

and define the transition between states.

7. Focus on possible omissions which is a very common error in specifying control.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

43

Creating Control Specification (CSPEC)

A control specification (CSPEC) represents the behavior of the system in two different ways.

The CSPEC contains a state diagram that is a sequential specification of behavior. It can also

contain a program activation table – a combinatorial specification of behavior. The following

diagram represents CSPEC for the Safe Home Application.

The above diagram depicts a preliminary state diagram for the level 1 control flow model for

SafeHome. The diagram indicates how the system responds to events as it traverses the four

states defined at this level. By reviewing the state diagram, you can determine the behavior of

the system and more important, ascertain whether there are “holes” in the specified behavior.

The state diagram indicates that the transition from the Idle state can occur if the system is

reset, activated, or powered off. If the system is activated a transition to the Monitoring

System Status state occurs, display messages are changed and the process Monitor and

Control System is invoked. Two transition occurs out of the Monitoring System Status state..

When the system is deactivated, a transition occurs back to the Idle state. When a sensor is

triggered into the Acting On Alarm state. All transitions and the content of all states are

considered during the review.

Creating Process Specification (PSPEC)

This process is used to describe all flow model processes that appear at the final level of

refinement. The content of the process specification can include narrative text, a program

design language (PDL) description of the process algorithm, mathematical equations, tables, or

Unified Modeling Language (UML) activity diagrams. By providing a PSPEC to accompany

each bubble in the flow model, the software engineer creates a mini-SPEC that can serve as a

guide to the design of the software component that will implement the process.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

44

 Scenario – Based Modeling

Developing Use Cases

The first step in writing a use case is to define the set of “actors” that will be involved in the

story. Actors are the different people who use the system or product within the context of the

function and behavior that is to be described. Actors represent the roles that people play as the

system operates. Thus an actor is anything that communicates with the system or product and

that is external to the system. Every actor has one or more goals while using the system. A

typical user may play a number of different roles when using a system, whereas an actor

represents a class of external entities that play one role in the context of the use case.

Eg. A machine operator (a user) who interacts with the control computer for a manufacturing

cell that contains a number of robots and numerically controlled machines. After careful

review of requirements, the software for the control computer requires four different modes for

interaction: programming mode, test mode, monitoring mode and troubleshooting mode.

Therefore, four actors can be defined: programmer, tester, monitor and troubleshooter. In some

cases, the machine operator can play all of these roles. In others, different people may play the

role of each actor.

Requirements elicitation is an evolutionary activity, not all actors are identified during the first

iteration. It is possible to identify primary actors during the first iteration and secondary actors

as more is learnt about the system.

Once actors have been identified, Use Cases can be developed. Rules for developing Use

Cases

Who is the primary actor, the secondary actors?

What are the actor’s goals?

What preconditions should exist before the story begins?

What main tasks or functions are performed by the actor?

What exceptions might be considered as the story is described?

What variations in the actor’s interaction are possible?

What system information will be actor acquire, produce, or change?

Will the actor have to inform the system about changes in the external environment?

What information does the actor desire from the system?

Does the actor wish to be informed about unexpected changes?

What is Use Case?

A use case diagram at its simplest is a representation of a user's interaction with the system

and depicting the specifications of a use case. A use case diagram can portray the different

types of users of a system and the various ways that they interact with the system. This type of

diagram is typically used in conjunction with the textual use case and will often be

accompanied by other types of diagrams as well.

Writing Use Case

1. What should we write about?

2. Inception and elicitation provide us the information we need to begin writing use cases.

3. How much should we write about it?

4. How detailed should we make our description?

5. How should we organize the description?

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

45

Developing an Activity Diagram

 What are the main tasks or functions that are performed by the actor?

 What system information will the actor acquire, produce or change?

 Will the actor have to inform the system about changes in the external environment?

 What information does the actor desire from the system?

 Does the actor wish to be informed about unexpected changes?

Preliminary Use-Case Diagram for the SafeHome System

SafeHome

Access camera

surveillance viathe

Internet

Configure

SafeHome system

parameters

Set alarm

Cameras

Home

owner

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

46

Activity diagram for Access camera surveillance via the Internet- display camera views

function

 Creating a behavioral Model

The behavioral model indicates how software will respond to external events or stimuli. To

create the model, following are the steps:

1. Evaluate all use cases to fully understand the sequence of interaction within the system.

2. Identify events that drive the interaction sequence and understand how these events

relate to specific objects.

Thumbnail View

Other function

may also be

selected

No input tries

remain

Exit this function

Enter password

And user ID

Select major

function
Prompt for reentry

Select surveillance

Select specific

camera - thumbnails

Select camera icon

View camera output

in labeled window

Prompt for another

view

See another camera

Select a specific camera

Valid

passwords/ ID

Invalid passwords/

ID

Input tries

remain

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

47

3. Create a sequence for each use case.

4. Build a state diagram for the system.

5. Review the behavorial model to verify accuracy and consistency.

State Representations

In the context of behavioral modeling, two different characterizations of states must be

considered:

1. the state of each class as the system performs its function and

2. the state of the system as observed from the outside as the system performs its function

The state of a class takes on both passive and active characteristics

1. A passive state is simply the current status of an object’s all attributes.

The active state of an object indicates the current status of the object as it undergoes a

continuing transformation or processing.

The States of a System

 State—a set of observable circumstances that characterizes the behavior of a system at a

given time

 State transition—the movement from one state to another

 Event—an occurrence that causes the system to exhibit some predictable form of behavior

 Action—process that occurs as a consequence of making a transition

3.5. Design Modeling

Design Process

Software design is an iterative process through which requirements are translated into a

“blueprint” for constructing the software. The design is representation at a high level of

abstraction – data, functional, and behavioral requirements. As design iterations occur,

subsequent refinement leads to design representations at much lower levels of abstraction.

reading

locked

select ing

password

ent ered

comparing

password = incorrect

& numberOfTries < maxTries

password = correct

act ivat ion successful

key hit

do: validat ePassw ord

numberOfTries > maxTries

t imer < lockedTime

t imer > lockedTime

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

48

There are three characteristics that serve as a guide for the evaluation of a good design:

1. The design must implement all the explicit requirements contained in the requirements

model, and it must accommodate all the implicit requirements desired by stakeholders.

2. The design must be a readable, understandable guide for those who generate code and for

those who test and subsequently support the software.

3. The design should provide a complete picture of the software, addressing the data,

functional and behavioral domains for implementation.

Design Quality Guidelines

1. A design should exhibit an architecture that a) has been created using recognizable

architectural styles or patterns, b) is composed of components that exhibit good design

characteristics and c) can be implemented in an evolutionary fashion, thereby facilitating

implementation and testing.

2. A design should be modular, i.e. the software should be logically partitioned into elements

or subsystems.

3. A design should contain distinct representations of data, architecture, interfaces and

components.

4. A design should lead to data structures that are appropriate for the classes to be

implemented and are drawn from recognizable data patterns.

5. A design should lead to components that exhibit independent functional characteristics.

6. A design should lead to interfaces that reduce the complexity of connections between

components and with the external environment.

7. A design should be derived using a repeatable method that is driven by information

obtained during software requirements analysis.

8. A design should be represented using a notation that effectively communicates its

meaning.

Quality Attributes

Hewlett-Packard developed a set of software quality attributes that has been given the acronym

FURPS. The FURPS quality attributes represent a target for all software design:

 Functionality: is assessed by evaluating the features set and capabilities of the program,

the generality of the functions that are delivered, and the security of the overall system.

 Usability: is assessed by considering human factors, overall aesthetics, consistency, and

documentation.

 Reliability: is evaluated by measuring the frequency and severity of failure, the accuracy

of output results, the mean-time-to-failure, the ability to recover from failure, and the

predictability of the program.

 Performance: is measured by processing speed, response time, resource consumption,

throughput, and efficiency.

 Supportability: combines the ability to extend the program extensibility, adaptability,

serviceability maintainability, testability, compatibility, configurability, etc.

Design Concepts

A set of fundamental software design concepts has evolved over the history of software

engineering. Although the degree of interest in each concept has varied over the years, each

has stood the test of time.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

49

Following are the software concepts that span both traditional and object- oriented software

development.

Abstraction :

At the highest level of abstraction, a solution is stated in broad terms using the language of the

problem environment. At lower levels of abstraction, a more detailed description of the

solution is provided.

As we move through different levels of abstraction, we work to create procedural and data

abstractions. A procedural abstraction refers to a sequence of instructions that have a specific

and limited function. An example of a procedural abstraction would be the word open for a

door.

A data abstraction is a named collection of data that describes a data object. In the context of

the procedural abstraction open, we can define a data abstraction called door. Like any data

object, the data abstraction for door would encompass a set of attributes that describe the door

(e.g. door type, swing direction, weight).

Architecture :

Software architecture alludes to the “overall structure of the software and the ways in which

the structure provides conceptual integrity for a system.”

In its simplest from, architecture is the structure of organization of program components

(modules), the manner in which these components interact, and the structure of data that are

used by the components.

The goal of software design is to derive an architectural rendering of a system. This rendering

serves as a framework from which detailed design activities are constructed.

A set of architectural patterns enable a software engineer to reuse design-level concepts.

The architectural design can be represented using one or more of a number of different

models.

Structural models represent architecture as an organized collection of program components.

Framework models increase the level of design abstraction by attempting to identify repeatable

architectural design frameworks that are encountered in similar types of applications.

Dynamic models address the behavioral aspects of the program architecture, indicating how

the structure or system configuration may change as a function of external events.

Process models focus on the design of business or technical process that the system must

accommodate.

Functional models can be used to represent the functional hierarchy of a system.

Patterns :

A design pattern “conveys the essence of a proven design solution to a recurring problem

within a certain context amidst computing concerns.”

A design pattern describes a design structure that solves a particular design problem within a

specific context and amid “forces” that may have an impact on the manner in which the pattern

is applied and used.

The intent of each design pattern is to provide a description that enables a designer to

determine:

1. Whether the pattern is applicable to the current work,

2. Whether the pattern can be reused, and

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

50

3. Whether the pattern can serve as a guide for developing a similar, but functionally or

structurally different pattern.

Modularity :

Software architecture and design patterns embody modularity; that is, software is divided into

separately named and addressable components, sometimes called modules that are integrated

to satisfy problem requirements.

Monolithic software (large program composed of a single module) cannot be easily grasped by

a software engineer. The number of control paths, span of reference, number of variables, and

overall complexity would make understanding close to impossible.

It is the compartmentalization of data and function. It is easier to solve a complex problem

when you break it into manageable pieces. “Divide-and-conquer”

Don’t over-modularize. The simplicity of each small module will be overshadowed by the

complexity of integration “Cost”.

Information Hiding :

It is about controlled interfaces. Modules should be specified and design so that information

(algorithm and data) contained within a module is inaccessible to other modules that have no

need for such information.

Hiding implies that effective modularity can be achieved by defining a set of independent

modules that communicate with one another only that information necessary to achieve

software function.

The use of Information Hiding as a design criterion for modular systems provides the greatest

benefits when modifications are required during testing and later, during software

maintenance. Because most data and procedures are hidden from other parts of the software,

inadvertent errors introduced during modifications are less likely to propagate to other location

within the software.

Functional Independence :

The concept of functional Independence is a direct outgrowth of modularity and the concepts

of abstraction and information hiding.

Design software such that each module addresses a specific sub-function of requirements and

has a simple interface when viewed from other parts of the program structure. Functional

independence is a key to good design, and to software quality. Independence is assessed using

two qualitative criteria: cohesion and coupling. Cohesion is an indication of the relative

functional strength of a module. Coupling is an indication of the relative interdependence

among modules. Coupling is a qualitative indication of the degree to which a module is

connected to other modules and to the outside world in “lowest possible” way.

Refinement :

It is the elaboration of detail for all abstractions. It is a top down strategy. A program is

developed by successfully refining levels of procedural details. A hierarchy is developed by

decomposing a macroscopic statement of function (a procedural abstraction) in a stepwise

fashion until programming language statements are reached.

We begin with a statement of function or data that is defined at a high level of abstraction.

The statement describes function or information conceptually but provides no information

about the internal workings of the function or the internal structure of the data. Refinement

causes the designer to elaborate on the original statement, providing more and more details

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

51

with successive refinement (elaboration). Abstraction enables a designer to specify procedure

and data and yet suppress low-level details.

Refactoring :

It is a reorganization technique that simplifies the design of a component without changing its

function or behavior. When software is re-factored, the existing design is examined for

redundancy, unused design elements, inefficient or unnecessary algorithms, poorly constructed

data structures, or any other design failures that can be corrected to yield a better design.

3.6. The Design Model

 Data design elements

1. Data model --> data structures

2. Data model --> database architecture

Data design or data architecting creates a model of data which is represented at higher level of

abstraction. The data is refined progressively into more implementation specific

representation. The data architecture has profound influence on software architecture. At the

application level it is treated as database and in business as data warehouse.

Architectural design elements are similar to floor plan of the house. Architectural model is

derived from information about the software to be built. Analysis model elements i.e. DFD,

analysis classes, availability of architectural patterns and styles.

process dimension

archit ect ure

element s

int erface

element s

component -level

element s

deployment -level

element s

low

high

class diagrams

analysis packages

CRC models

collaborat ion diagrams

use-cases - t ext

use-case diagrams

act ivit y diagrams

sw im lane diagrams

collaborat ion diagrams dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

dat a f low diagrams

cont rol- f low diagrams

processing narrat ives

st at e diagrams

sequence diagrams

st at e diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

ref inement s t o:

deployment diagrams

class diagrams

analysis packages

CRC models

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

ref inement s t o:

component diagrams

design classes

act ivit y diagrams

sequence diagrams

design class realizat ions

subsyst ems

collaborat ion diagrams

component diagrams

design classes

act ivit y diagrams

sequence diagrams

a na ly sis mode l

de sign mode l

Requirement s:

 const raint s

 int eroperabilit y

 t arget s and

 conf igurat ion

t echnical int erf ace

 design

Navigat ion design

GUI design

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

52

Interface design elements

Equivalent to a set of detailed for doors, windows external drawings utilities. This provides

details of information few to and from the system among the system components. The three

important part of interface design are

 The user interface

 External interfaces to other systems, devices, networks

 Internal interfaces among various components.

Component level design elements

It is equivalent to a set of detailed drawings and specs for each room in a house. It carefully

defines every detail of the house. This should fully describe the internal detail of each software

component. It also includes all local data objects and algorithmic all processing that occurs

within a component and an interface which allows access to all component operations.

UML component diagram for Sensor Management

 Deployment level design elements

This indicates how software functionally and subsystem terms will be allocated within the

physical computing environment that will support the software. The subsystems housed within

each computing element are indicated. The external subsystems are designed to manage all

attempts to access the system from outside sources. Each subsystem would be elaborated to

indicate the components that implement functions.

Cont rolPanel

LCDdisplay

LEDindicat ors

keyPadCharact er ist ics

speaker

wirelessInt erf ace

readKeySt roke()

decodeKey ()

displaySt at us()

light LEDs()

sendCont rolMsg()

Figure 9 .6 UML int erface represent at ion for Co n t ro lPa ne l

KeyPad

readKeyst roke()

decodeKey()

< < int erface> >

WirelessPDA

KeyPad

MobilePhone

Sensor

Management

Sensors

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

53

UML Deployment Diagram

Question Bank

1. State three objectives of Analysis model 3 Marks

2. State six analysis rules of thumb 3 Marks

3. Describe using a diagram inputs and outputs of a domain analysis 4 Marks

4. Explain elements of the analysis model using a diagram 4 Marks

5. Define data objects, attributes, relationship, cardinality and

 modality with example each 4 Marks

6. Define DFD, give symbols and their meaning 4 Marks

7. State six rules to be followed while constructing a DFD 4 Marks

8. Define data dictionary, meaning, use and list advantages of

Data Dictionary 4 Marks

9. State the steps of creating and Control Flow Model 4 Marks

10. Define CSPEC with an example 4 Marks

11. Define PSPEC with an example 4 Marks

12. Define Use Case with an example 4 Marks

13. Explain activity diagram for Access Camera Survillana in a

 Safe Home System 4 Marks

14. Describe the behavioral model with an example of State diagram 4 Marks

15. Define design process with three characteristics 4 Marks

16. State eight design quality guidelines 4 Marks

17. State FURPS design quality attributes 4 Marks

18. Define Abstraction, Architecture, Pattern, Modularity, Information hiding,

 Functional Independence, Refinement, Refactoring 8 Marks

19. Define

a. Data Design element 3 Marks

b. Interface design element 3 Marks

c. Component level design elements 3 Marks

d. Deployment level design elements 3 Marks

Control

Panel

CPI

Sensor

Security

Home Management

Surveillance

Communication

Personal Computer

External Access

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

54

4. Chapter 4

Software Testing Strategies and Methods

4.1. Software Testing

 Definition of Software Testing

Well planned series of steps that result in successful construction of software.

Testing is an individualistic process and the types vary depending on the development

approaches. It is defense against programming errors. To avoid any inherent coding errors,

several distinct approaches known as approaches or philosophies are used. This is called

Strategic approach to software testing.

Good Test:

1. A good test has a high probability of finding an error.

2. The tester must understand the software and how it might fail.

3. A good test is not redundant.

4. Testing time is limited; one test should not serve the same purpose as another test.

5. A good test should be the “best of the breed”.

6. Tests that have the highest likelihood of uncovering a whole class of errors should be used.

7. A good test should be neither too simple nor too complex.

8. Each test should be executed separately; combining a series of tests could cause side

effects and mask certain errors.

Successful Testing Strategies:

Test Plan:

A Test plan is a document detailing a systematic approach for testing a system such as a

machine or software. The plan typically contains a detailed understanding of what the eventual

workflow will be.

A test plan documents the strategy that will be used to verify and ensure that a product or

system meets its design specifications and other requirements. A test plan is usually prepared

by or with significant input from Test Engineers.

Test Case:

A test case in software engineering is a set of conditions or variables under which a tester will

determine whether an application or software system is working correctly. The mechanism for

determining whether a software program or system has passed or failed such a test is known as

a test oracle. In some settings, an oracle could be a requirement or use case, while in others it

could be a heuristic. It may take many test cases to determine that a software program or

system is considered sufficiently scrutinized to be released. Test cases are often referred to as

test scripts, particularly when written. Written test cases are usually collected into test suites.

Test Data:

Test Data Generation, an important part of software testing, is the process of creating a set of

data for testing the adequacy of new or revised software applications. It may be the actual data

that has been taken from previous operations or artificial data created for this purpose.

4.2. Characteristics of Testing Strategies

1. To perform effective testing, a software team should conduct effective Formal Technical

Reviews (FTRs) using which many errors are eliminated before testing.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

55

2. Testing begins at the component level and works toward the integration of the entire

computer based system.

3. Different testing techniques are appropriate at different points of time.

4. Testing is conducted by the developer as well as the individual group.

5. Testing and debugging are different activities which must be accommodated in any

testing strategies.

4.3. Software Verification and Validation (V & V)

Verification is a quality control process that is used to evaluate whether or not a product,

service, or system complies with regulations, specifications, or conditions imposed at the start

of a development phase. Verification can be in development, scale-up, or production. This is

often an internal process.

Validation is a Quality assurance process of establishing evidence that provides a high degree

of assurance that a product, service, or system accomplishes its intended requirements. This

often involves acceptance of fitness for purpose with end users and other product stakeholders.

Set of activities that ensure correct implementation of software function validation refers to

different set of activities that has been built is trouble for customer requirements.

Differences between Verification and Validation:

Sr.

No.

Verification Validation

1. Verification is a static practice of

verifying documents, design, code and

program

Validation is a dynamic mechanism of

validating and testing the actual product

2. It does not involve executing the code It always involves executing the code

3. It is human based checking of documents

and files

It is computer based execution of program

4. Verification uses methods like

inspections, reviews, walkthroughs, and

desk-checking etc.

Validation uses methods like black box

testing, gray box testing, and white

box(structural) testing etc.

5. Verification is to check whether the

software conforms to specifications

Validation is to check whether software

meets the customer expectations and

requirements

6. It can catch errors that validation cannot

catch. It is low level exercise

It can catch errors that verification cannot

catch. It is high level exercise

7. Target is requirements specification,

application and software architecture,

high level, complete design and database

design etc.

Target is actual product-a unit, a module,

a bent of integrated modules, and

effective final product.

8. Verification is done be development

team to provide that the software is as per

the specifications in the SRS document

Validation is carried out with the

involvement of client and testing team.

9. It, generally, comes first-done before

validation.

It generally follows after verification

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

56

10.
Question

Are we building the product right?
Question

Are we building the right product?

11.
Evaluation Items

Plans, requirements specification, Design

Specification, Code and test cases

Evaluation Items

The actual product/software

12.
Activities

Reviews, Walkthroughs, Inspections
Activities

Testing

4.4. Testing Strategies

Strategy for Conventional Software Architecture:-

Code unit testing, integration testing, validation testing, system testing

A software process may be viewed as the spiral illustrated in the diagram below. Initially,

system engineering defines the role of software and leads to software requirements analysis,

where the information the role of software and leads to software requirements analysis, in

which the information domain, function, behavior, performance, constraints and validation

criteria for software are established.

A strategy for software testing may also be viewed in the context of the spiral. Unit testing

begins at the vortex of the spiral and concentrates on each unit of the software for the

implementation in Source Code. The testing progresses by moving outward along the Spiral to

integration testing. In this the focus is on design and the construction of the software

architecture. Taking another turn outward on the Spiral, validation testing is a part where

requirements established as part of requirements modeling which are validated against the

software that has been constructed. Finally there is the system testing, where the software and

other system elements are tested a whole.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

57

Considering the process from a procedural point of view, testing within the context of software

engineering is actually a series of four steps that are implemented sequentially. Initially, the

tests focus on each component individually, ensuring that they function properly as a unit. Unit

testing makes heavy use of testing techniques that exercise specific paths in a component’s

control structure to ensure complete coverage and maximum error detection. Integration

testing addresses the issues associated with the dual problems of verification and program

construction. Test case design techniques that focus on inputs and outputs are more prevalent

during integration, although techniques that exercise specific program paths may be used to

ensure coverage of major control paths. After the software has been integrated, a set of high-

order tests is conducted. Validation testing provides final assurance that software meets all

informational, functional, behavioral and performance requirements. Software once validated,

must be combined with other system elements. System testing verifies that all elements mesh

properly and that the overall system functions are achieved.

Testing Strategies for Conventional Software :

 Completeness and Consistency must be assessed as they are built in

 Testing must include error discovery techniques.

 Testing strategies and factors are the unique characteristics of object-oriented software.

 Begins “ testing in the small “ “ testing in the large”

 Series of regression tests are run to uncover errors due to communication and

collaboration between the classes and addition of new classes.

 Finally entire system as a whole is tested to ensure that errors in requirements are

uncovered.

Module

Interface

Local data structures

Boundary conditions

Independent paths

Error-handling paths

Test

Cases

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

58

 Unit Testing

Verification efforts of smallest unit of software design. Unit testing is considered as an adjunct

to the coding step. Design information should provide guidance for establishing the test cases

that are likely to uncover the errors in each of the categories. Each test case should be coupled

with a set of expected results. The unit test is white-box oriented, and the step can be

conducted in parallel for multiline

Unit Test Consideration

The module interface is tested to ensure that information properly flows into and out of the

program unit test. The local data structure is examined to ensure that data stored temporarily

maintains its integrity during all steps in an algorithm’s execution. Boundary conditions are

tested to ensure that the module operates properly at boundaries established to limit or restrict

processing. All independent paths (basis paths) through the control structure are exercised to

ensure that all statements in a module have been executed at least once. And finally, all error

handling paths are tested.

Unit Test Procedures

Unit Testing is normally considered as an adjunct to the coding step. After source level code

has been developed, reviewed, and verified for correspondence to component level design,

unit test case designs begins. A review of design information provides guidance for

establishing test cases that are likely to uncover errors. Each test case should be coupled with a

set of expected results.

 Integration Testing

It is a systematic technique of constructing the software architecture while at the same time

conducting test to uncover errors associated with interfacing. The objective is to take tested

components and build a program structure that has been dictated by the system.

Driver

Module to

be tested

Stub Stub

Interface

Local data structures

Boundary conditions

Independent paths

Error-handling paths

Test

Cases

RESULTS

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

59

 Top down Integration

This is an incremental approach to construction of software architecture. Modules are

integrated by moving downward through the control hierarchy beginning with the main

programme. Modules are then incorporated into the structure with depth-first/breadth first

manner.

The depth-first integration integrates all components on a major control path of the program

structure. Selection of a major path is somewhat arbitrary and depends on application-specific

characteristics. Selecting the left-hand path, components M1, M2, M5 would be integrated first.

Next, M8 or M6 would be integrated. Then, the central and right- hand control paths are built.

Breadth-first integration incorporates all components directly subordinate at each level,

moving across the structure horizontally. Components M2, M3 and M4 would be integrated

first. The next control level, M5, M6 and so on, follows. The integration process is performed

in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted for all

components directly subordinate to the main control module.

2. Depending on the integration approach selected subordinate stubs are replaced one at a

time with actual components.

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests, another stub is replaced with the real component.

5. Regression testing may be conducted to ensure that new errors have not been introduced.

 Bottom-Up integration

This begins with the construction a test of small modules. The components are integrated from

the bottom-up, the functionally provided by components subordinate to a given level is always

available and the need for stubs is eliminated. A bottom-up integration strategy may be

implemented with the following steps:

1. Low-level components are combined into clusters that perform a specific software

subfunction.

2. A driver is written to coordinate test case input and output.

3. The cluster is tested

4. Drivers are removed and clusters are combined moving upward in the program structure.

M1

M2 M3 M4

M5 M6 M7

M9

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

60

In the above figure, components are combined to form clusters 1, 2 and 3. Each of the clusters

is tested using a driver. Components in cluster 1 and 2 are subordinate to Ma. Driver D1 and

D2 are removed and the clusters are interfaced directly to Ma. Similarly, driver D3 for cluster 3

is removed prior to integration with module Mb. Both Ma and Mb will ultimately be integrated

with component Mc and so forth. As integration moves upward, the need for separate test

rivers lessens. If the top two levels of program structure are integrated top down, the number

of drivers can be reduced substantially and integration of clusters is greatly simplified.

 Regression Testing

Each time when a new module is added as a part of integration testing, the software changes,

new data flow paths are established, new I/O may occur, and new control logic is invoked.

These changes may cause problems with functions that previously worked flawlessly. In the

context of an integration test strategy, regression testing is the re-execution of some subset

tests that have already been conducted to ensure that changes have not propagated unintended

side effects. In a broader context, successful tests (of any kind) result in the discovery of

errors, and errors must be corrected. Whenever software is corrected, some aspects of the

software configuration (the program, its documentation, or data that support it) are changes.

Regression testing is the activity that helps to ensure that changes (due to testing or for other

reasons) do not introduce unintended behavior or additional errors.

Regression testing may be conducted manually, by re-executing a subset of all test cases or

using automated capture/playback tools. Capture/playback tools enable the software engineer

to capture test cases and results for subsequent playback and comparison.

The regression test suite (the subset of tests to be executed) contains three different classes of

test cases:

1. A representative sample test that will exercise all software functions.

2. Additional test that focus on software function that are likely to be affected by the change.

3. Tests that focus on software components that have been changed.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

61

 Smoke Testing

Smoke testing is an integration testing approach that is commonly used when “shrinkwrapped”

software products are being developed. It is designed as a pacing mechanism for time-critical

projects, allowing the software team to assess its project on a fragment basis. In essence, the

smoke testing approach encompasses the following activities:

1. Software components that have been translated into code are integrated into a build. They

will include files, libraries, reusable modules; engineered components, which are required,

implement one or more product functions.

2. Series of test designed to expose earns that will keep the build from properly performing

the function. The intent is to uncover “show stopper” errors.

3. The build is integrated with other builds and the entire product is smoke tested daily. The

approach may be either top down/bottom up.

The smoke test should exercise the entire system from end to end. It does not have to be

exhaustive, but it should be capable of exposing, major problems. The smoke test should be

thorough enough that if the build passes, you can assume that it is stable enough to be tested

more thoroughly. Smoke testing provides a number of benefits when it is applied on complex,

Time critical software engineering projects. They are

a. Integration risk is minimized

b. Quality of end product is increased

c. Error diagnosis and correction are simplified

d. Progress is easier to assess

4.5. Alpha and Beta Testing

It is generally difficult for a software designer to foresee, how the customer will really use a

program instructions for use may be misinterpreted, strange combinations of data may be

regularly used, output that seemed clear during testing may be intangible to a user in the field.

If the software developed to be used by many customers, it is impractical to perform formal

acceptance test with each one. Most software product designs use a process called Alpha and

Beta testing to uncover errors that only the end user seems able to find.

The ‘Alpha’ test is conducted at the developed site by the end users. The software is used in a

natural setting with the developer looking over the shoulder of typical users and recording

errors and usage problems. “Alpha” tests are conducted in a controlled environment.

“Beta test” is conducted at end user sites. It is the ‘live’ application of the software on an

environment that cannot be controlled by the developer. The end user records all problems

(real or imagined) that are encountered during beta testing and reports this to the developer at

regular intervals. Using this feedback software engineers make modifications and then prepare

for release of the software product to the entire customer base.

Difference between Alpha and Beta Testing

Alpha Testing Beta Testing

Alpha testing conducted at Developer

Site by End user

Beta Testing is conducted at User site by

End user

Alpha testing is conducted in Control

Environment as Developer is present

Beta Testing is conducted in Un-control

Environment

Less Chances of finding an error as

Developer usually guides user

More Chances of finding an error as

Developer can use system in any way

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

62

It is kind of mock up testing The system is tested as Real application

Error/Problem may be solved in quick

time if possible

The user has to send difficulties to the

developer who then corrects it.

Short process Lengthy Process

4.6. System Testing

 Concept of System Testing

System testing is actually a series of different tests whose primary purpose is to fully exercise

the computer-based system. Although each test has a different purpose, all work to verify that

system elements have been properly integrated and perform allocated functions.

The software engineer should anticipate potential interfacing problems and 1) design error-

handling paths that test all information coming from other elements of the system, 2) conduct a

series of tests that simulate bad data or other potential errors at the software interface, 3)

record the results of tests to use as “evidence” if finger-pointing does occur and 4) participate

in planning and design of system tests to ensure that software is adequately tested.

 Types of System testing (Recovery, Security, Stress, Performance Testing) with

examples

a. Recovery Testing

Many computer-based systems recover from the fault and resume processing within a pre

specified time for the system should be "fault" tolerant. The recovery testing for the

software to fail in a variety of ways and verifies that the recovery is properly performed. If

the recovery is automatic, re-initialization, check pointing mechanism, data recovery and

restart are evaluated for correctness. If the recovery needs human intervention, mean-time-

to-repairs (MTTR) is evaluated to find whether it is within acceptable limits.

b. Security Testing

Security testing attempts to verify that protection mechanisms built into a system protect it

from improper penetration. During security testing, the tester plays the role of the

individual who desires to penetrate the system. The tester may attempt to acquire

passwords through external clerical means, may attack the system with custom software

designed to break down any defenses that have been constructed, may overwhelm the

system, thereby denying service to others, may purposely cause system errors, hoping to

penetrate during recovery, may browse through insecure data, hoping to find the key to

system entry.

c. Stress Testing

Stress tests are designed to confront programs with abnormal situations. Stress testing

executes a system in a manner that demands resources in abnormal quantity, frequency, or

volume. For example 1) special tests may be designed that generate ten interrupts per

second, when one or two is the average rate, 2) input data rates may be increased by an

order of magnitude to determine how input functions will respond, 3) test cases that

require maximum memory or other resources are executed, 4) test cases that may cause

thrashing in a virtual operating system are designed, 5) test cases that may cause excessive

hunting for disk-resident data are created. Essentially, the tester attempts to break the

program.

A variation of stress testing is a technique called sensitivity testing. In some situations, a

very small range of data contained within the bounds of valid data for a program may

cause extreme and even erroneous processing or profound performance degradation.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

63

Sensitivity testing attempts to uncover data combinations within valid input classes that

may cause instability or improper processing.

d. Performance Testing

For real-time and embedded systems, software that provides required function but does not

conform to performance requirements is unacceptable. Performance testing is designed to

test the runtime performance of software within the context of an integrated system. This

occurs throughout all steps in the testing processes. These are often complied with stress

testing to assess hardware & software requirements. This is useful to assess resource

utilization and to avoid possible system failure. External instrumentation can monitor

execution intervals, log events as they occur and sample machine states on a regular basis.

By instrumenting a system, the tester can uncover situations that lead to degradation and

possible system failure.

4.7. Concept of White-Box and Black-Box Testing

 White- Box Testing

White Box testing is also called as glass-box testing. It is a test case design philosophy that

uses the control structure described as part of component-level design to drive test cases.

Using this method, one can derive test cases that 1) guarantee that all independent paths

within a module have been exercised at least once, 2) exercise all logical decisions on their

true and false sides, 3) execute all loops at their boundaries and within their operational

bounds and 4) exercise internal data structures to ensure their validity.

White-box testing is one of the two biggest testing methodologies used today. It has

several major advantages:

1. A side effect of having the knowledge of the source code is beneficial to thorough

testing.

2. Optimization of code by revealing hidden errors and being able to remove these

possible defects.

3. Gives the programmer introspection because developers carefully describe any new

implementation.

4. Provides traceability of tests from the source, allowing future changes to the software

to be easily captured in changes to the tests.

5. White box tests are easy to automate.

6. White box testing give clear, engineering-based, rules for when to stop testing.

Although white-box testing has great advantages, it is not perfect and contains some

disadvantages:

1. White-box testing brings complexity to testing because the tester must have knowledge

of the program, including being a programmer. White-box testing requires a

programmer with a high-level of knowledge due to the complexity of the level of

testing that needs to be done.

2. On some occasions, it is not realistic to be able to test every single existing condition

of the application and some conditions will be untested.

3. The tests focus on the software as it exists, and missing functionality may not be

discovered.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

64

 Black-Box Testing

It is called behavior testing or performance testing because it focuses on functional

requirement of soft.

1. Black-Box testing attempts to find errors of following category:

2. Incorrect or Interface errors

3. Errors in data structure

4. Initialization & termination error

5. Behavior & performance error.

Following are some techniques that can be used for designing black box tests.

Equivalence partitioning

Equivalence Partitioning is a software test design technique that involves dividing input values

into valid and invalid partitions and selecting representative values from each partition as test

data.

Boundary Value Analysis

Boundary Value Analysis is a software test design technique that involves determination of

boundaries for input values and selecting values that are at the boundaries and just

inside/outside of the boundaries as test data.

Cause Effect Graphing

Cause Effect Graphing is a software test design technique that involves identifying the cases

(input conditions) and effects (output conditions), producing a Cause-Effect Graph, and

generating test cases accordingly.

BLACK BOX TESTING ADVANTAGES

1. Tests are done from a user’s point of view and will help in exposing discrepancies in the

specification

2. Tester need not know programming languages or how the software has been implemented

3. Tests can be conducted by a body independent from the developers, allowing for an

objective perspective and the avoidance of developer-bias

4. Test cases can be designed as soon as the specifications are complete

BLACK BOX TESTING DISADVANTAGES

1. Only a small number of possible inputs can be tested and many program paths will be left

untested

2. Without clear specifications, which is the situation in many projects, test cases will be

difficult to design

3. Tests can be redundant if the software designer/ developer has already run a test case.

Differentiate between Black Box and White box testing

Criteria Black Box Testing White Box Testing

Definition Black Box testing is a

software testing method in

which the internal

structure/design/

implementation of the item

being tested is NOT known

to the tester

White Box Testing is a

software testing method in

which the internal

structure/design/

implementation of the item

being tested is known to

the tester.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

65

Levels Applicable to Mainly applicable to higher

levels of testing:

Acceptance testing, System

testing

Mainly applicable to lower

levels of testing: Unit

testing, Integration Testing

Responsibility Generally independent

Software Testers

Generally Software

Developers

Programming

Knowledge

Not Required Required

Implementation

Knowledge

Not Required Required

Basis for Test Cases Requirement Specifications Detail Design

4.8. Debugging

 Concept and need of Debugging

Debugging occurs as a consequence of successful testing. When a test uncovers error,

debugging is an action that results in the removal of the error. It is a process that connects

a symptom to a cause is debugging. Debugging process begins with the exertion of a test

case. Results are assessed and a lack of correspondence between expected and actual

performance is encountered.

The debugging process will usually have one of two outcomes 1) the cause will be found

and corrected 2) the cause will not be found. In second case the person performing

debugging may suspect a cause, design a test case to help validate that suspicion and work

toward error correction in an iterative fashion.

 Characteristics of Bugs

1. The symptom and the cause may be geographically remote. That is, the symptom may

appear in one part of a program, while the cause may actually be located at a site that is

far removed. Highly coupled components.

2. The symptom may disappear when another error is corrected.

3. The symptom may actually be caused by nonerrors.

4. The symptom may be caused by human error that is not easily traced.

5. The symptom may be a result of timing problems, rather than processing problems.

6. It may be difficult to accurately reproduce input conditions (e.g a real time application

in which input ordering is indeterminate).

7. The symptom may be intermittent. This is particularly common in embedded systems

that couple hardware and software inextricably.

8. The symptom may be due to causes that are distributed across a number of tasks

running on different processors.

4.9. Debugging Strategies

Debugging approach has one overriding objective to find the cause to find and correct the

cause of a software error or detect. The objective is realized by a combination of systematic

evaluation, intuition, and luck.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

66

Debugging tactics

The brute force category of debugging is probably the most common and least efficient method

for isolating the cause of a software error. We apply brute force debugging methods when all else

fails. Using a “let the computer find the error” philosophy, memory dumps are taken, run time

traces are invoked, and the program is loaded with output statements.

Backtracking is a fairly common debugging approach that can be used successfully in small

programs. Beginning at the site where s symptom has been uncovered, the source code is traced

backward until the site of the cause is found. Unfortunately, as the number of source lines

increases, the number of potential backward paths may become unmanageably large.

Cause Elimination is manifested by induction or deduction and introduces the concept of binary

partitioning. Data related to the error occurrence are organized to isolate potential causes.

Automated debugging: Each of these debugging approaches can be supplemented with

debugging tools that provide semi-automated support for the software engineer as debugging

strategies are attempted.

Question Bank

1. Define Software testing and its role in quality assurance 3 Marks

2. State six attributes of good testing 3 Marks

3. Differentiate between good test and successful testing 4 Marks

4. Define and differentiate between Software verification and validation 4 Marks

5. Define Unit testing and explain its need 4 Marks

6. Define Integration Testing – To-down approach 4 Marks

7. Define Integration Testing – Bottom-up Approach 4 Marks

8. Briefly explain Regression Testing 4 Marks

9. Explain Smoke testing and its advantages 4 Marks

10. Explain and Differentiate Alpha and beta Testing 8 Marks

11. In System testing explain the need for Recovery testing, Security testing,

Stress testing and Performance testing 8 Marks

12. Explain and differentiate between Black Box and White box testing 8 Marks

13. Define debugging and list eight characteristics of Bugs 8 Marks

14. Briefly explain debugging strategies 4 Marks

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

67

5. Chapter

Software Project Management

5.1. Introduction to Software Project Management & its need

A Project is a temporary sequence of unique, complex and connected activities that have a

goal or purpose and must be completed within budget and specific time and according to

specifications.

Management is the art of getting things done through and with a team of individuals in

formally organized groups. Project Manager is a person responsible for supervising the project

development from start to completion.

The software project management includes basic function such as scoping, planning,

estimating, scheduling, organizing, directing, coordinating, controlling and closing. The

effective software project management focuses on the four P’s viz People, Product, Process

and Project.

Project management involves the planning, monitoring, and control of the people, process and

events that occur as software revolves from a preliminary concept to an operational

implementation.

Effective software project management focuses on four P’s People, Product, Process and

project.

5.2. The Management Spectrum – the 4 P’s and their significance

The People:

The “people factor” is so important that the software engineering institute has developed a

people management capability maturity model (PM-CMM), “to enhance the readiness of

software organizations to undertake increasingly complex applications by helping to attract,

grow, motivate, deploy, and retain the talent needed to improve their software development

capability”.

The people management maturity model defines the following key practice areas for software

people: recruiting, selection, performance management, training, compensation, career

development, organization and work design, and team/culture development. The organizations

that achieve high levels of PM-CMM have higher likelihood of implementing effective

software management.

The software processing is populated by stakeholders who can be categorized into one of five

constituencies viz Senior managers, Project (technical) managers, Practitioners, Customers,

End-users.

The Product :

Before a project can be planned, product objectives and scope should be established,

alternative solutions should be considered, and technical and management constrains should be

identified. Without this information, it is impossible to define reasonable and accurate

estimates of the cost ,an effective assignment of risk, a realistic breakdown of project tasks,

or a manageable product schedule that provides a meaningful indication of progress.

The software developers and customer must meet to define product objectives and scope.

Objectives identify the overall goals for the product (from customer’s point of view) without

considering how the goal will be achieved. Scope identifies the primary data, function and

behaviors that characterize the product, and more importantly, attempt to bind these

characteristics in a quantitative manner.

We must examine the product and the problem intended to solve at the very beginning of the

project. For this reason, the scope of the product must be established and bounded. The first

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

68

software project management activity is the determination of software scope. Software project

scope must be unambiguous and understandable at the management and technical levels.

Problem Decomposition, sometime called partitioning or problem elaboration is an activity

that sits at the core of software require analysis.

Decomposition is applied into two major areas:

1. The functionality that must be delivered and

2. The process that will be used to deliver it.

The Process :

A software process provides the framework from which a comprehensive plan for software

development can be established. A number of different tasks sets-tasks, milestones, work

products, and quality assurance points enable the framework activities to be adapted to the

characteristics of the software projects and the requirements of the project team

Project planning begins with the melding of the product and the process. Assuming that the

organization has adopted the following set of framework activities:- communications,

planning, modeling, construction, deployment and the team members who work on a product

function will apply each of the framework activities to it. The process framework establishes a

skeleton for project planning. It is adopted by allocating a task set that is appropriate to the

project.

In essence, a matrix as shown below is created. Each major function (of word processing

software) is listed in the left-hand column. Framework activities are listed in the top row.

The job of project manager is to estimate resource requirements for each matrix cell, start and

end dates for the tasks associated with each cell, and work products to be produced as a

sequence of each task.

Process Decomposition commences when the project manager asks,” How do we accomplish

this framework activity” For example, a small, relatively simple project or a more complex

project, which has a broader scope and more significant business impact requires different

work tasks for the communication activity.

The Project:

“A project is like a road trip. Some projects are simple and routine, like driving to the store in

broad daylight. But most projects worth doing are more like driving a truck off-road, in the

mountains, at night.” -Cem Kaner, James Bach, and Pattichord Bret

To avoid project failure, a software project manager and the software engineers who build the

project must heed a set of common warning signals, understand the critical success factors that

lead to good project management, and develop a common sense approach for planning,

monitoring and controlling the project. Reel suggests a five-part common sense approach to

software projects:

1. Start on the right foot

2. Maintain momentum

3. Track progress

4. Make smart decisions

5. Conduct a postmortem analysis

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

69

5.3. Project Scheduling

 Concept of Project Scheduling

Software project scheduling is an action that distributes estimated effort across the planned

project duration by allocating the effort to specific software engineering tasks. During

early stages of project planning, a macroscopic schedule is developed. This type of

schedule identifies all major process framework activities and the product function to

which they are applied. As the project gets under way, each entry on the macroscopic

schedule is refined into a detailed schedule. Here, specific software actions and tasks are

identified and scheduled.

 Factors that delay Project Schedule

Scheduling for software engineering can be viewed from two perspectives. In first, an end

date for release of a computer-based system has already been established. The software

organization is constrained to distribute effort within the prescribed time frame. The

second view of software scheduling assumes that rough chronological bounds have been

discussed but that the end date is set by the software engineering organization. Effort is

distributed to make best use of resources, and an end date is defined after careful analysis

of software.

 Principles of Project Scheduling

Basic Principles guide software project scheduling are:

Compartmentalization

The project must be compartmentalized into a number of manageable activities and tasks.

To accomplish compartmentalization, both the product and the process are refined.

Interdependency

The interdependency of each compartmentalized activity or task must be determined.

Some tasks must occur in sequence, while others can occur in parallel. Some activities

cannot commence until the work product produced by another is available. Other activities

can occur independently.

Time allocation

Each task to be scheduled must be allocated some number of work units. In addition, each

task must be assigned a start date and a completion date that are a function of the

interdependencies and whether work will be conducted on a full-time or part-time basis.

Effort Validation

Every project has a defined number of people on the software team. As time allocation

occurs, you must ensure that no more than the allocated number of people has been

scheduled at any given time.

Defined responsibilities

Every task that is scheduled should be assigned to a specific team member.

Defined outcomes

Every task that is scheduled should have a defined outcome. For software projects, the

outcome is normally a work product.

Defined milestones

Every task or group of tasks should be associated with a project milestone. A milestone is

accomplished when one or more work products has been reviewed for quality and has been

approved.Each of these principles is applied as the project schedule evolves.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

70

 Project Scheduling Techniques – Concept of Gantt Chart, PERT, CPM

Scheduling of a software project does not differ greatly from scheduling of any multitask

engineering effort. Therefore, generalized project scheduling tools and techniques can be

applied with little modification for software projects.

Program evaluation and review technique (PERT) and the critical path method (CPM) are

two projects scheduling methods that can be applied to software development. Both

techniques are driven by project planning activities like estimates effort, a decomposition

of the product function, the selection of the appropriate process model and task set and

decomposition of the tasks that are selected.

PERT: project Evaluation and Review techniques have developed in 1950s to plan and

control large weapons development projects for the US navy. It was a graphic networking

technique. The Microsoft project and other PM software packages PERT chart represent

another view of project. It does represent intertask relationships more effectively. Tasks

and milestones are included in the chart symbols such as circles; squares are used to depict

tasks and milestone. Microsoft uses rectangles to represent task. Each task rectangle is

divided into sections with task name at the top and task-id/duration in the middle.

PERT: Program Evaluation and Review Technique

PERT plan diagrammatically represents the network of tasks required to complete a

project. (Task Network). It explicitly establishes sequential dependencies and relationships

among the tasks.

PERT diagram consists of both activities and events.

Activity  Time and resource consuming efforts required to complete a segment of the

total project. These are represented using solid lines with directional arrays.

Events  Represent the completion of segments/ part of the project represented by circles.

Activities and events are coded as described to designate their functions in the overall

project.

PERT chart and accompanying table defines estimated and actual times, costs, responsible

personnel for monitoring and control of project performances.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

71

The total time required to complete the project can be determine by locating the longest

path (in terms of time) in the chart. This path is the “critical path”.

Both PERT and CPM provide quantitative tools that allow you to 1) determine the critical

path – the chain of tasks that determines the duration of the project, 2) establish “most

likely” time estimates for individual tasks by applying statistical models and 3) calculate

“boundary times” that define a time “window” for a particular task.

Time-Line Charts

When creating software project schedule, we begin with a set of tasks. If automated tools

are used, the work breakdown is input as a task network or task outline. Effort, duration

and start date are then input for each task, In addition, tasks may be assigned to specific

individuals.

As a consequence of this input, a time-line chart, also called a Gantt chart is generated. A

time-line chart can be developed for the entire project.

The figure below depicts a part of a software project schedule that emphasizes scoping task

for a word-processing (WP) software product. All project tasks are listed in the left-hand

column. The horizontal bars indicate the duration of each task. When multiple bars occur

at the same time on the calendar, task concurrency is implied. The diamond indicate

milestones.

Once the information necessary for the generation of a time-line chart has been input, the

majority of software project scheduling tools produce project tables – a tabular listing of

all project tasks, their planned and actual start and end dates, and a variety of related

information. Used in conjunction with the time-line chart, project tables enable to track

progress.

Time-Line chart - Micro-level Scheduling

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

72

 Project Table

 Critical Path Method (CPM)

A project of any kind involves a number of activities. Some of them are interdependent

while others are independent. It is important that project management should effectively

plan, schedule, co-ordinate and optimize the activities of the various participants in the

project. There are certain activities which are to be completed within the stipulated time. If

those critical activities are not completed within the prescribed time line, the completion of

the whole project is hampered.

If the project is quite large effective control over all the activities is difficult. To control

such projects, Network techniques have been developed.

Advantages of the Critical Path Method:

1. It helps in ascertaining the time schedule.

2. Control becomes easy for management.

3. It helps in preparing a detailed plan of action/operations/ activities

4. It helps in enforcing the plan of actions/operations/activities.

5. It gives a standard method for communicating project plans, schedules and time and

cost performances.

6. It identifies the most critical elements.

7. It shows ways to enforce strict supervision over the entire project programme.

5.4. Concept of Task Network

A task set is a collection of software engineering work tasks, milestones, work products, and

quality assurance filters that must be accomplished to complete a particular project. The task

set must provide enough discipline to achieve high software quality. But, it must not burden

the project team with unnecessary work.

In order to develop a project schedule, a task set must be distributed on the project time line.

The task set will vary depending upon the project type and the degree of rigor with which the

software team decides to do its work.

A task set example

Concept development projects are initiated when the potential for some new technology must

be explored. There is no certainty that the technology will be applicable, but a customer

believes that potential benefit exists. Concept development projects are approached by

applying the following actions:

Concept scoping determines the overall scope of the project.

Preliminary concept planning establishes the organization’s ability to undertake the work

implied by the project scope.

Technology risk assessment evaluates the risk associated with the technology to be

implemented as part of the project scope.

Proof of concept demonstrates the viability of a new technology in the software context.

Concept implementation implements the concept representation in a manner that can be

reviewed by a customer and is used for “marketing” purposes when a concept must be sold to

other customers or management.

Customer reaction to the concept solicits feedback on a new technology concept and targets

specific customer applications.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

73

A task network is also called as an activity network, is a graphic representation of the task

flow for a project. It is sometimes used as the mechanism through which task sequence and

dependencies are input to an automated project scheduling tool. In its simplest form, the task

network depicts major software engineering actions.

The concurrent nature of software engineering actions leads to a number of important

scheduling requirements. Because parallel tasks occur asynchronously, it is important to

determine dependencies to ensure continuous progress toward completion. In addition, one

should be aware of those tasks that lie on the critical path. It means tasks that must be

completed on schedule if the project as a whole is to be completed on schedule. It is important

to note that the task network is macroscopic.

5.5. Ways of Project Tracking

Project scheduling is very important task. To complete project in decided timing is quite

difficult. There might be reality of a technical project that there might be reality of a technical

project that there might be hundreds of technical tasks. Some of the tasks may lie in the

projects or may be some tasks lie outside the project.

There are certain tasks which fall on the critical path. If those are not considered in schedule,

the project may be collapsed. The main job of project manager is to define all tasks involved in

project, building a network that shows their independencies and the tasks which are critical

within the network.

The major activity carried out in software project scheduling is that, it distributes estimated

effects across the planned project period by allocating the effort to particular software

engineering tasks.

Tracking the schedule

If it has been properly developed, the project schedule becomes a road map that defines the

tasks and milestones to be tracked and controlled as the project proceeds. Tracking can be

accomplished in a number of different ways:

 Conducting periodic project status meetings in which each team member reports progress

and problems

 Evaluating the results of all reviews conducted throughout the software engineering

process.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

74

 Comparing the actual start date to the planned start date for each project task listed in the

resource table

 Meeting informally with practitioners to obtain their subjective assessment of progress to

date and problems on the horizon

 Using earned value analysis to assess progress quantitatively

In reality, all of these tracking techniques are used by experienced project managers.

The relationship between effort and delivery time

The software project scheduling is an activity that distributes effort across the planned project

duration by allocating the effort to specific software engineering task.

The project manager prepares a project schedule along with the team members. Every project

team member should know their respective tasks and how to fit the same into the overall

project schedule.

The project schedule indicates following tasks:

1. The start and stop of each activity

2. When the resource is required?

3. Quantity/Amount of resources.

Generally the schedule evolves overtime. At the early stages of project macroscopic schedule

is prepared. After all tasks are identified, the detailed and complete schedule is prepared.

As an example of macroscopic scheduling, consider the SafeHomeAssured.com WebApp.

Recalling earlier discussions of SafeHomeAssured.com, seven increments can be identified for

the Web-based component of the project:

Increment 1: Basic company and product information

Increment 2: Detailed product information and downloads

Increment 3: Product quotes and processing product orders

Increment 4: Space layout and security system design

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

75

Time line for macroscopic project schedule

5.6. Risk Management

What is a software risk?

Risk refers to the uncertainties related to future happenings with the project. A risk is any

uncertain event that may or may not happen, which will impact the project.

This means the risks can be predicted and brought within control. However, when the risk

becomes a reality, it leads to unwanted consequences and may be losses.

The risk may be proactive or reactive

Reactive Risk Strategy

The reactive risk strategies monitor the project for likely risks. It can be called as the fire-

fighting mode or the crisis management mode.

The team gets into action in an attempt to correct the problem rapidly

Proactive Risk Strategy

A proactive strategy begins long before technical work is initiated. Potential risks are

identified, their probability and impact are assessed, priorities are ranked and a plan is

established to avoid such risks. This is called as a contingency plan which will enable to

respond in a controlled and effective manner.

Project Risk

Project risks threaten the project plan. That is, if project risks become real, it is likely that the

project schedule will slip and that costs will increase. Project risks identify potential

budgetary, schedule, personnel (staffing and organization), resource, stakeholder, and

requirements problems and their impact on a software project.

Technical Risks

Technical risks threaten the quality and timeliness of the software to be produced. If a

technical risk becomes reality, implementation may become difficult or impossible. Technical

risks identify potential design, implementation, interface, verification and maintenance

problems. In addition, specification ambiguity, technical uncertainty, technical obsolescence

and “leading-edge” technology are also risk factors.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

76

Business Risk

Business risks threaten the viability of the software to be built and often risk the project or the

product. Candidates for the top five business risks are (1) building an excellent product or

system that no one really wants (market risk), (2) building a product that no longer fits into the

overall business strategy for the company (strategic risk), (3) building a product that the sales

force doesn’t understand how to sell (sales risk), (4) losing the support of senior management

due to a change in focus or a change in people (management risk), and (5) losing budgetary or

personnel commitment (budget risks).

5.7. Risk Assessment

Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan. By identifying

known and predictable risks, the project manager takes a first step toward avoiding them when

possible and controlling them when necessary.

There are two distinct types of risks for each of the categories: generic risks and product-

specific risks. Generic risks are a potential threat to every software project. Product- specific

risks can be identified only by those with a clear understanding of technology, the people, and

the environment that is specific to the software that is to build.

One method for identifying risks is to create a risk item checklist. The checklist can be used

for identification and focuses subset or known and predictable risks in the following generic

subcategories.

Product Size - risks associated with the overall size of the software to be built or modified.

Business impact: Risks associated with constraints imposed by management or the

marketplace.

Stakeholder characteristics – risks associated with the sophistication of the stakeholders and

the developer’s ability to communicate with stakeholders in a timely manner.

Process definition - Risks associated with the degree to which the software process has been

defined and is followed by the development organization.

Development environment- risks associated with the availability and quality of the tools to

be used to build the product.

Technology to be built – risks associated with the complexity of the system to be built and

the “newness” of the technology that is packaged by the system.

Staff size and experience – risks associated with the overall technical and project experience

of the software engineers who will do the work.

The risk item checklist can be organized in different ways. Questions relevant to each of the

topics can be answered for each software project. The answer to these questions allows you to

estimate the impact of risk.

Risk Analysis

The following questions are to be used for analyzing project risk:

Have top software and customer manager formally committed to support the project?

Are end users enthusiastically committed to the project and the system/product to be built?

Are requirements fully understood by the software engineering team and its customers?

Have customers been involved fully in the definition of requirements?

Do end users have realistic expectations?

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

77

Is the project scope stable?

Does the software engineering team have the right mix of skills?

Are project requirements stable?

Does the project team have experience with the technology to be implemented?

Is the number of people on the project team adequate to do the job?

Do all customer/user constitutes agree on the importance of the project and on the

requirements for the system/product to be built?

If any one of these questions is answered negatively mitigation. Monitoring and management

steps should be instituted without fail. The degree to which the project is at risk is directly

proportional to the number of negative responses to these questions.

Risk Components

The risk components are defined in the following manner

Performance risk: The degree of uncertainty that the product will meet its requirements and be

fit for its intended use.

Cost risk: the degree of uncertainty that the project budget will be maintained.

Support risk: the degree of uncertainty that the resultant software will be easy to correct, adapt

and enhance.

Schedule risk: The degree of uncertainty that the project schedule will be maintained and that

the product will be delivered on time.

The impact of each risk driver on the risk component is divided into one of four impact

categories – negligible, marginal, critical or catastrophic.

Impact Assessment

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

78

Risk Projection/Prioritization

Risk projection also called risk estimation, attempts to rate each risk in two ways

1. The likelihood or probability that the risk is real and

2. The consequences of the problems associated with the risk

There are four risk projection steps:

1. Establish a scale that reflects the perceived likelihood of risk

2. Delineate the consequence of the risk

3. Estimate the impact of the risk on the project and the product

4. Assess the overall accuracy of the risk projection so there will be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to prioritization. No

software team has the resources to address every possible risk with the same degree of rigor.

By prioritizing risks, we can allocate resources where they will have the most impact.

A risk table provides with a simple technique for risk projection.

Sample Risk table prior to sorting

It contains all risks listed in first column of the table. Each risk is categorized in the second

column. The probability of occurrence of each risk is entered in the next column of the table.

The probability value for each risk can be estimated by team members individually. The

impact of each risk is assessed. The categories for each of the four risk components –

performance, support, cost and schedule – are averaged to determine an overall impact value.

After the four columns are completed, the table is sorted by probability and by impact. High

High-probability, high-impact risks percolate to the top of the table, and low-probability risks

drop to the bottom. This accomplishes first-order risk prioritization.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

79

The cutoff line (drawn horizontally at some point in the table) implies that only risks that lie

above the line will be given further attention. Risks that fall below the line are reevaluated to

accomplish second-order prioritization.

Risk and Management Concern

risk impact and probability have a distinct influence on management concern. A risk factor

that has a high impact but a very low probability of occurrence should not absorb a significant

amount of management time. However, high-impact risks with moderate to high probability

and low-impact risks with high probability should be carried forward into the risk analysis

steps that follow.

All risks that lie above the cutoff line should be managed. The column labeled RMMM

contains a pointer into a risk mitigation, monitoring, and management plan or, alternatively, a

collection of risk information sheets developed for all risks that lie above the cutoff. Risk

probability can be determined by making individual estimates and then developing a single

consensus value. Although that approach is workable, more sophisticated techniques for

determining risk probability have been developed. Risk drivers can be assessed on a

qualitative probability scale that has the following values: impossible, improbable, probable,

and frequent. Mathematical probability can then be associated with each qualitative value

Assessing Risk Impact

Three factors affect the consequences that are likely if a risk does occur: its nature, its scope,

and its timing. The nature of the risk indicates the problems that are likely if it occurs.

The overall risk exposure RE is determined using the following relationship

RE = P X C

Where P is the probability of occurrence for a risk, and C is the cost to the project should the

risk occur.

For example: assume that the software team defines a project risk in the following manner:

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

80

Risk identification: Only 70 percent of the software components scheduled for reuse will, in

fact, be integrated into the application. The remaining functionality will have to be custom

developed.

Risk probability: 80 percent (likely).

Risk impact: Sixty reusable software components were planned. If only 70 percent can be

used, 18 components would have to be developed from scratch (in addition to other custom

software that has been scheduled for development). Since the average component is 100 LOC

and local data indicate that the software engineering cost for each LOC is $14.00, the overall

cost (impact) to develop the components would be

18 X 100 X 14 = $25,200.

Risk exposure: RE = 0.80 X 25,200 ~ $20,200

Risk exposure can be computed for each risk in the risk table, once an estimate of the cost of

the risk is made. The total risk exposure for all risks (above the cutoff in the risk table) can

provide a means for adjusting the final cost estimate for a project. It can also be used to predict

the probable increase in staff resources required at various points during the project schedule.

5.8. Risk Control – Need and RMMM Strategy

During early stages of project planning, a risk may be stated quite generally. As time passes

and more is learned about the project and the risk, it may be possible to refine the risk into a

set of more detailed risks, each somewhat easier to mitigate, monitor, and manage.

One way to do this is to represent the risk in condition-transition-consequence

Using the CTC format for the reuse risk, we can write

Given that all reusable software components must conform to specific design standards and

that some do not conform, then there is concern that (possibly) only 70 percent of the planned

reusable modules may actually be integrated into the as-built system, resulting in the need to

custom engineer the remaining 30 percent of components.

This general condition can be refined in the following manner:

Sub condition 1.

Certain reusable components were developed by a third party with no knowledge of internal

design standards.

Sub condition 2.

The design standard for component interfaces has not been solidified and may not conform to

certain existing reusable components.

Sub condition 3.

Certain reusable components have been implemented in a language that is not supported on the

target environment.

The consequences associated with these refined subconditions remain the same (i.e., 30

percent of software components must be custom engineered), but the refinement helps to

isolate the underlying risks and might lead to easier analysis and response.

RMMM Strategy:

All of the risk analysis activities presented to this point have a single goal—to assist the

project team in developing a strategy for dealing with risk. An effective strategy must consider

three issues: risk avoidance, risk monitoring, and risk management and contingency planning.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

81

f a software team adopts a proactive approach to risk, avoidance is always the best strategy.

This is achieved by developing a plan for risk mitigation.

For example,

Assume that high staff turnover is noted as a project risk r1 . Based on past history and

management intuition, the likelihood l1 of high turnover is estimated to be 0.70 (70 percent,

rather high) and the impact x1 is projected as critical. That is, high turnover will have a critical

impact on project cost and schedule

 To mitigate this risk, you would develop a strategy for reducing turnover. Among the

possible steps to be taken are:

 Meet with current staff to determine causes for turnover (e.g., poor working conditions,

low pay, competitive job market).

 Mitigate those causes that are under your control before the project starts. Once the project

commences, assume turnover will occur and develop techniques to ensure continuity when

people leave.

 Organize project teams so that information about each development activity is widely

dispersed.

 Define work product standards and establish mechanisms to be sure that all models and

documents are developed in a timely manner.

 Conduct peer reviews of all work (so that more than one person is “up to speed”).

 Assign a backup staff member for every critical technologist.

As the project proceeds, risk-monitoring activities commence. The project manager monitors

factors that may provide an indication of whether the risk is becoming more or less likely. In

the case of high staff turnover, the general attitude of team members based on project

pressures, the degree to which the team has jelled, interpersonal relationships among team

members, potential problems with compensation and benefits, and the availability of jobs

within the company and outside it are all monitored. In addition to monitoring these factors, a

project manager should monitor the effectiveness of risk mitigation steps. For example, a risk

mitigation step noted here called for the definition of work product standards and mechanisms

to be sure that work products are developed in a timely manner. This is one mechanism for

ensuring continuity, should a critical individual leave the project. The project manager should

monitor work products carefully to ensure that each can stand on its own and that each imparts

information that would be necessary if a newcomer were forced to join the software team

somewhere in the middle of the project.

Risk management and contingency planning assumes that mitigation efforts have failed and

that the risk has become a reality. Continuing the example, the project is well under way and a

number of people announce that they will be leaving. If the mitigation strategy has been

followed, backup is available, information is documented, and knowledge has been dispersed

across the team. In addition, one can temporarily refocus resources (and readjust the project

schedule) to those functions that are fully staffed, enabling newcomers who must be added to

the team to “get up to speed.” Those individuals who are leaving are asked to stop all work

and spend their last weeks in “knowledge transfer mode.” This might include video-based

knowledge capture, the development of “commentary documents or Wikis,” and/or meeting

with other team members who will remain on the project.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

82

It is important to note that risk mitigation, monitoring, and management (RMMM) steps incur

additional project cost. For example, spending the time to back up every critical technologist

costs money. Part of risk management, therefore, is to evaluate when the benefits accrued by

the RMMM steps are outweighed by the costs associated with implementing them. In essence,

you perform a classic cost-benefit analysis. If risk aversion steps for high turnover will

increase both project cost and duration by an estimated 15 percent, but the predominant cost

factor is “backup,” management may decide not to implement this step. On the other hand, if

the risk aversion steps are projected to increase costs by 5 percent and duration by only 3

percent, management will likely put all into place.

A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring, and

management plan (RMMM). The RMMM plan documents all work performed as part of risk

analysis and are used by the project manager as part of the overall project plan.

A risk management strategy can be included in the software project plan, or the risk

management steps can be organized into a separate risk mitigation, monitoring, and

management plan (RMMM). The RMMM plan documents all work performed as part of risk

analysis and is used by the project manager as part of the overall project plan. Some software

teams do not develop a formal RMMM document. Rather, each risk is documented

individually using a risk information sheet (RIS). In most cases, the RIS is maintained using a

database system so that creation and information entry, priority ordering, searches, and other

analysis may be accomplished easily.

Once RMMM has been documented and the project has begun, risk mitigation and monitoring

steps commence. As I have already discussed, risk mitigation is a problem avoidance activity.

Risk monitoring is a project tracking activity with three primary objectives: (1) to assess

whether predicted risks do, in fact, occur; (2) to ensure that risk aversion steps defined for the

risk are being properly applied; and (3) to collect information that can be used for future risk

analysis. In many cases, the problems that occur during a project can be traced to more than

one risk.

5.9. Software Configuration Management (SCM)

The output of the software process is information that may be divided into three broad

categories: (1) computer programs (both source level and executable forms), (2) work products

that describe the computer programs (targeted at various stakeholders), and (3) data or content

(contained within the program or external to it). The items that comprise all information

produced as part of the software process are collectively called a software configuration

Software configuration management is a set of activities that have been developed to manage

change throughout the life cycle of computer software. SCM can be viewed as a software

quality assurance activity that is applied throughout the software process.

An SCM Scenario

A typical CM operational scenario involves a project manager who is in charge of a software

group, a configuration manager who is in charge of the CM procedures and policies, the

software engineers who are responsible for developing and maintaining the software product,

and the customer who uses the product.

At the operational level, the scenario involves various roles and tasks. For the project manager,

the goal is to ensure that the product is developed within a certain time frame. Hence, the

manager monitors the progress of development and recognizes and reacts to problems. This is

done by generating and analyzing reports about the status of the software system and by

performing reviews on the system.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

83

The goals of the configuration manager are to ensure that procedures and policies for creating,

changing, and testing of code are followed, as well as to make information about the project

accessible. To implement techniques for maintaining control over code changes, this manager

introduces mechanisms for making official requests for changes, for evaluating them (via a

Change Control Board that is responsible for approving changes to the software system), and

for authorizing changes. The manager creates and disseminates task lists for the engineers and

basically creates the project context. Also, the manager collects statistics about components in

the software system, such as information determining which components in the system are

problematic.

For the software engineers, the goal is to work effectively. This means engineers do not

unnecessarily interfere with each other in the creation and testing of code and in the production

of supporting work products. But, at the same time, they try to communicate and coordinate

efficiently. Specifically, engineers use tools that help build a consistent software product. They

communicate and coordinate by notifying one another about tasks required and tasks

completed. Changes are propagated across each other’s work by merging files. Mechanisms

exist to ensure that, for components that undergo simultaneous changes, there is some way of

resolving conflicts and merging changes. A history is kept of the evolution of all components

of the system along with a log with reasons for changes and a record of what actually changed.

The engineers have their own workspace for creating, changing, testing, and integrating code.

At a certain point, the code is made into a baseline from which further development continues

and from which variants for other target machines are made.

Benefits of SCM

SCM is an umbrella activity that is applied throughout the software process.

SCM is a set of tracking and control activities that are initiated when SE project begin and

terminate only when the software is taken out of operation.

SCM helps to improve software quality and on time delivery.

SCM defines the project strategy for change management. When formal SCM is invoked, the

change control process produces software change requests, reports and engineering change

orders.

SCM helps to track, analyze and control every work product.

Elements of Configuration Management System

 Component elements — a set of tools coupled within a file management system (e.g., a

database) that enables access to and management of each software configuration item.

 Process elements — a collection of actions and tasks that define an effective approach to

change management (and related activities) for all constituencies involved in the

management, engineering, and use of computer software.

 Construction elements — a set of tools that automate the construction of software by

ensuring that the proper set of validated components (i.e., the correct version) have been

assembled.

 Human elements — a set of tools and process features (encompassing other CM elements)

used by the software team to implement effective SCM

SCM Repository - Functions and Features supported

The SCM repository is the set of mechanisms and data structures that allow a software team to

manage change in an effective manner. It provides the obvious functions of a modern database

management system by ensuring data integrity, sharing, and integration. In addition, the SCM

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

84

repository provides a hub for the integration of software tools, is central to the flow of the

software process, and can enforce uniform structure and format for software engineering work

products. To achieve these capabilities, the repository is defined in terms of a meta-model. The

meta-model determines how information is stored in the repository, how data can be accessed

by tools and viewed by software engineers, how well data security and integrity can be

maintained, and how easily the existing model can be extended to accommodate new needs

General features and Content of repository

The features and content of the repository are best understood by looking at it from two

perspectives: what is to be stored in the repository and what specific services are provided by

the repository. A robust repository provides two different classes of services: (1) the same

types of services that might be expected from any sophisticated database management system

and (2) services that are specific to the software engineering environment. A repository that

serves a software engineering team should also (1) integrate with or directly support process

management functions, (2) support specific rules that govern the SCM function and the data

maintained within the repository, (3) provide an interface to other software engineering tools,

and (4) accommodate storage of sophisticated data objects (e.g., text, graphics, video, audio)

Content of Repository

SCM Features

Versioning.

As a project progresses, many versions (Section 22.3.2) of individual work products will be

created. The repository must be able to save all of these versions to enable effective

management of product releases and to permit developers to go back to previous versions

during testing and debugging. The repository must be able to control a wide variety of object

types, including text, graphics, bit maps, complex documents, and unique objects like screen

and report definitions, object files, test data, and results. A mature repository tracks versions of

objects with arbitrary levels of granularity; for example, a single data definition or a cluster of

modules can be tracked.

Dependency tracking and change management.

The repository manages a wide variety of relationships among the data elements stored in it.

These include relationships between enterprise entities and processes, among the parts of an

application design, between design components and the enterprise information architecture,

between design elements and deliverables, and so on. Some of these relationships are merely

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

85

associations, and some are dependencies or mandatory relationships. The ability to keep track

of all of these relationships is crucial to the integrity of the information stored in the repository

and to the generation of deliverables based on it, and it is one of the most important

contributions of the repository concept to the improvement of the software process. For

example, if a UML class diagram is modified, the repository can detect whether related

classes, interface descriptions, and code components also require modification and can bring

affected SCIs to the developer’s attention.

Requirements tracing.

This special function depends on link management and provides the ability to track all the

design and construction components and deliverables that result from a specific requirements

specification (forward tracing). In addition, it provides the ability to identify which

requirement generated any given work product (backward tracing).

Configuration management.

A configuration management facility keeps track of a series of configurations representing

specific project milestones or production releases.

Audit trails.

An audit trail establishes additional information about when, why, and by whom changes are

made. Information about the source of changes can be entered as attributes of specific objects

in the repository. A repository trigger mechanism is helpful for prompting the developer or the

tool that is being used to initiate entry of audit information (such as the reason for a change)

whenever a design element is modified.

The SCM Process – Change Control and Version Control

The software configuration management process defines a series of tasks that have four

primary objectives: (1) to identify all items that collectively define the software configuration,

(2) to manage changes to one or more of these items, (3) to facilitate the construction of

different versions of an application, and (4) to ensure that software quality is maintained as the

configuration evolves over time. A process that achieves these objectives need not be

bureaucratic or ponderous, but it must be characterized in a manner that enables a software

team to develop answers to a set of complex questions:

 How does a software team identify the discrete elements of a software configuration?

 How does an organization manage the many existing versions of a program (and its

documentation) in a manner that will enable change to be accommodated efficiently?

 How an organization control changes does before and after software is released to a

customer?

 Who has responsibility for approving and ranking requested changes?

 How can we ensure that changes have been made properly?

 What mechanism is used to apprise others of changes that are made?

These questions lead to the definition of five SCM tasks—identification, version control,

change control, configuration auditing, and reporting

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

86

Layers of SCM process

SCM tasks can viewed as concentric layers. SCIs flow outward through these layers

throughout their useful life, ultimately becoming part of the software configuration of one or

more versions of an application or system. As an SCI moves through a layer, the actions

implied by each SCM task may or may not be applicable. For example, when a new SCI is

created, it must be identified. However, if no changes are requested for the SCI, the change

control layer does not apply. The SCI is assigned to a specific version of the software (version

control mechanisms come into play). A record of the SCI (its name, creation date, version

designation, etc.) is maintained for configuration auditing purposes and reported to those with

a need to know.

Identification of Object in the Software configuration

To control and manage software configuration items, each should be separately named and

then organized using an object-oriented approach. Two types of objects can be identified basic

objects and aggregate objects. A basic object is a unit of information that is created during

analysis, design, code, or test. For example, a basic object might be a section of a requirements

specification, part of a design model, source code for a component, or a suite of test cases that

are used to exercise the code.

Version Control

Version control combines procedures and tools to manage different versions of configuration

objects that are created during the software process. A version control system implements or is

directly integrated with four major capabilities: (1) a project database (repository) that stores

all relevant configuration objects, (2) a version management capability that stores all versions

of a configuration object (or enables any version to be constructed using differences from past

versions), (3) a make facility that enables you to collect all relevant configuration objects and

construct a specific version of the software. In addition, version control and change control

systems often implement an issues tracking (also called bug tracking) capability that enables

the team to record and track the status of all outstanding issues associated with each

configuration object.

A number of version control systems establish a change set —a collection of all changes (to

some baseline configuration) that are required to create a specific version of the software.

A number of named change sets can be identified for an application or system. This enables

you to construct a version of the software by specifying the change sets (by name) that must be

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

87

applied to the baseline configuration. To accomplish this, a system modeling approach is

applied. The system model contains: (1) a template that includes a component hierarchy and a

“build order” for the components that describes how the system must be constructed, (2)

construction rules, and (3) verification rules. (4) A number of different automated approaches

to version control have been proposed over the last few decades. The primary difference in

approaches is the sophistication of the attributes that are used to construct specific versions

and variants of a system and the mechanics of the process for construction.

Change Control

Change control is vital. But the forces that make it necessary also make it annoying. We worry

about change because a tiny perturbation in the code can create a big failure in the product.

But it can also fix a big failure or enable wonderful new capabilities. We worry about change

because a single rogue developer could sink the project; yet brilliant ideas originate in the

minds of those rogues, and a burdensome change control process could effectively discourage

them from doing creative work.

For a large software project, uncontrolled change rapidly leads to chaos. For such projects,

change control combines human procedures and automated tools to provide a mechanism for

the control of change. A change request is submitted and evaluated to assess technical merit,

potential side effects, overall impact on other configuration objects and system functions, and

the projected cost of the change. The results of the evaluation are presented as a change report,

which is used by a change control authority (CCA)—a person or group that makes a final

decision on the status and priority of the change. An engineering change order (ECO) is

generated for each approved change. The ECO describes the change to be made, the

constraints that must be respected, and the criteria for review and audit.

The object(s) to be changed can be placed in a directory that is controlled solely by the

software engineer making the change. A version control system updates the original file once

the change has been made. As an alternative the object(s) to be changed can be “checked out”

of the project database (repository), the change is made, and appropriate SQA activities are

applied. The object(s) is (are) then “checked in” to the database and appropriate version

control mechanisms are used to create the next version of the software.

These version control mechanisms, integrated within the change control process, implement

two important elements of change management—access control and synchronization control.

Access control governs which software engineers have the authority to access and modify a

particular configuration object. Synchronization control helps to ensure that parallel changes,

performed by two different people, don’t overwrite one another.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

88

The Change Control Process

Question Bank

1. Define Project Management, Manager, Software Project Management, Software

 Configuration Management (SCM) 4 Marks

2. Explain in brief 4 P’s of Software Project Management 4 Marks

3. State eight causes/reasons for the failure of software projects 4 Marks

4. State basic principles of project scheduling. 4 Marks

5. Define Software risk, Project risk, Technical risk, Business risk. 4 Marks

6. Differentiate between Reactive and Proactive risk strategy. 4 Marks

7. Describe relationship between effort and delivery time in scheduling. 4 Marks

8. Using a schematic diagram describe concept of Task Network 4 Marks

9. What is software project tracking and control? Enlist activities. 4 Marks

10. What is risk projection? Explain steps. 4 Marks

11. Explain PERT with an example. 4 Marks

12. Explain Timeline (Gantt) chart. 4 Marks

13. Explain CPM with an example. 4 Marks

14. State recommended guidelines to avoid schedule failure. 4 Marks

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

89

15. Explain software Configuration Management (SCM). 4 Marks

16. State and define elements of Configuration Management System. 4 Marks

17. Describe SCM repository. 4 Marks

18. Explain SCM Process change Control and Version Control. 4 Marks

19. State benefits of SCM. 4 Marks

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

90

6. Chapter

Software Quality Management

6.1. Basic Quality Concept

 Quality: - Fit for use & meeting customer’s requirements

 Process: - A sequence of steps performed for a given purpose

 Quality assurance: All those planned and systematic actions necessary to provide adequate

confidence that a product or service will satisfy given requirements for quality.

 Quality control: Includes review & testing

 Quality Management

 Quality: A characteristic attribute of something. As an attribute of an item it refers to

measurable characteristics such as length, colures, electrical properties etc. Software is

largely an intellectual entity, which is more challenging to characteristics than physical

objects.

 User satisfaction: compliant budget, good quality, delivery within scheduled.

 Variation control: inspection, review, and tests.

 Quality assurance: Audit, reporting, effectiveness and completeness of the activities.

 Cost of quality : Prevention Costs, Appraisal Costs Failure Costs

6.2. Software Quality Assurance

Conformance to explicit stated functional and performance requirements, explicitly

documented development standards and implicit characteristic that are expected of all

professionally developed software.

1. Software requirements are the bases from which quality is measured. Lack of conformance

to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the manner in which

software is engineered. If criteria is not followed, lack of quality will be the result.

3. Set of implicit requirements i.e. desire of ease of use, good maintainability. If software

conforms to explicit and fails to mean implicit requirements, quality is a suspect.

 SQA activities

Software engineers do the technical works.

This is an independent group:

1. SQA plans for project.

2. Participants in the development of the project’s software process description.

3. Reviews software engineering activities to verify compliances with the defined

software process.

4. Audits designated software work products to verify compliances to define as part of

software process.

5. Ensure deviations in software work are documented; products are documented and

handled according to a documented procedure.

6. Record any non-compliances and report to senior management.

 Software Reviews

It is a filter for software process. A formal technical review is essentials from QA point of

views for unnecessary errors and improving software quality.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

91

Cost impact in software defect: - FTR for avoiding errors after software release. A Cost

impacts are minimum and errors are deleted easily.

Defect implications examiner: Generations and detector errors in preliminary design stage.

1. Review

 3-5 people involved

 Advance preparations

 Medium durations

 What is reviewed?

 Who reviewed?

 Finding & conclusion

2. FTR Guidelines

 Reviews the product

 Set agenda & maintain

 Limits debate & rebuttal

 Enunciate problem errors

 Text written notes

 Limit number of participants and insist on advance preparation.

 Develop a checklist for each product that is likely to be reviewed.

 Allocate resources & scheduled time

 Conduct meaningful training for all reviews

 Review your early reviews

6.3. Concept of Statistical SQA

Statistical quality assurance reflects a growing trend throughout industry to become more

quantitative about quality. For software, statistical quality assurance implies the following

steps:

1. Information about software errors and defects is collected and categorized.

2. An attempt is made to trace each error and defect to its underlying cause (e.g.,

nonconformance to specifications, design error, violation of standards, poor

communication with the customer).

3. Using the Pareto principle (80 percent of the defects can be traced to 20 percent of all

possible causes), isolate the 20 percent (the vital few).

4. Once the vital few causes have been identified, move to correct the problems that have

caused the errors and defects.

This relatively simple concept represents an important step toward the creation of an adaptive

software process in which changes are made to improve those elements of the process that

introduce error.

To illustrate the use of statistical methods for software engineering work, assume that a

software engineering organization collects information on errors and defects for a period of

one year. Some of the errors are uncovered as software is being developed. Others (defects)

are encountered after the software has been released to its end users. Although hundreds of

different problems are uncovered, all can be tracked to one (or more) of the following causes:

• Incomplete or erroneous specifications (IES)

• Misinterpretation of customer communication (MCC)

• Intentional deviation from specifications (IDS)

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

92

• Violation of programming standards (VPS)

• Error in data representation (EDR)

• Inconsistent component interface (ICI)

• Error in design logic (EDL)

• Incomplete or erroneous testing (IET)

• Inaccurate or incomplete documentation (IID)

• Error in programming language translation of design (PLT)

• Ambiguous or inconsistent human/computer interface (HCI)

• Miscellaneous (MIS)

To apply statistical SQA, the table given below is built. The table indicates that IES, MCC,

and EDR are the vital few causes that account for 53 percent of all errors. It should be noted,

however, that IES, EDR, PLT, and EDL would be selected as the vital few causes if only

serious errors are considered. Once the vital few causes are determined, the software

engineering organization can begin corrective action. For example, to correct MCC, you might

implement requirements gathering techniques to improve the quality of customer

communication and specifications. To improve EDR, you might acquire tools for data

modeling and perform more stringent data design reviews. It is important to note that

corrective action focuses primarily on the vital few. As the vital few causes are corrected, new

candidates pop to the top of the stack. Statistical quality assurance techniques for software

have been shown to provide substantial quality improvement. In some cases, software

organizations have achieved a 50 percent reduction per year in defects after applying these

techniques. The application of the statistical SQA and the Pareto principle can be summarized

in a single sentence: Spend your time focusing on things that really matter, but first be sure

that you understand what really matters!

Data collection for statistical SQA

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

93

6.4. Quality Evaluation Standards

 Six Sigma for Software

Six Sigma is the most widely used strategy for statistical quality assurance in industry

today. Originally popularized by Motorola in the 1980s, the Six Sigma strategy “is a

rigorous and disciplined methodology that uses data and statistical analysis to measure and

improve a company’s operational performance by identifying and eliminating defects’ in

manufacturing and service-related processes”. The term Six Sigma is derived from six

standard deviations—3.4 instances (defects) per million occurrences—implying an

extremely high quality standard. The Six Sigma methodology defines three core steps:

 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.

 Measure the existing process and its output to determine current quality performance

(collect defect metrics).

 Analyze defect metrics and determine the vital few causes.

If an existing software process is in place, but improvement is required, Six Sigma

suggests two additional steps:

 Improve the process by eliminating the root causes of defects.

 Control the process to ensure that future work does not reintroduce the causes of

defects.

These core and additional steps are sometimes referred to as the DMAIC (define,

measure, analyze, improve, and control) method.

If an organization is developing a software process (rather than improving an existing

process), the core steps are augmented as follows:

 Define customer requirements and deliverables and project goals via well-defined

methods of customer communication.

 Measure the existing process and its output to determine current quality performance

(collect defect metrics).

 Analyze defect metrics and determine the vital few causes.

 Design the process to (1) avoid the root causes of defects and (2) to meet customer

requirements.

 Verify that the process model will, in fact, avoid defects and meet customer

requirements.

This variation is sometimes called the DMADV (define, measure, analyze, design, and

verify) method.

 ISO 9000 for Software – Concept and major considerations

ISO Standards

ISO (International Organization for Standardization) is the world’s largest developer of

standards.

ISO is a network of the national standards institutes of 148 countries, on the basis of one

member per country, with a central secretariat in Geneva, Switzerland, that coordinates the

system.

ISO is a non-government organization: its members are not, as is the case in the United

Nations system, delegations of national governments

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

94

ISO is able to act, as a bridging organization in which a consensus can be reached on

solutions that meet both the requirements of business and the broader needs of society

ISO Standards benefits to society:

For customers, the worldwide compatibility of technology

For governments, International Standards provide the technological and scientific bases

underpinning health, safety and environmental legislation.

For trade officials negotiating the emergence of regional and global markets, Internationals

Standards create “a level playing field” for all competitors on those markets.

For developing countries, International Standards that represent an international an

international consensus on the state of the art constitute an important source of

technological know-how

For consumers, conformity of products and services to international Standards provides

assurance about their quality, safety and reliability.

For everyone, International Standards can contribute to the quality of life in general by

ensuring that the transport, machinery and tools we use are safe.

For the planet it inhabits, International Standards on air, water and soil quality, and on

emission of gasses and radiation, can contribute to efforts to preserve the environment.

ISO 9000 Standards

ISO 9000: 2000 – Guidelines for selection & use

ISO 9001: 2000 – Quality Assurance Model

ISO 9004: 2000 – Guidelines for process improvements

Model of a process-based Quality Management System

Customers

(ISO 9001)

and other

interested

parties

(ISO 9004)

Requ

ireme

nt

Continual Improvement of

the Quality Management

System

Customers
(ISO 9001)

And other

interested

parties

(ISO 9004)

Management

responsibilities

Measurement

Analysis,

improvement

Resource

management

Product

Realization

Satisfaction

Product

Act

How to

improve

next

time

Plan

What to

do?

How to do

it?

Check
Did

things

happen

accordin

g to

plan?

 Do

 Do

what

was

planned

Output

Input

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

95

6.5. CMMI – CMMI levels, Process Area Considered

The Capability Maturity Model Integration (CMMI), a comprehensive process meta-model

that is predicated on a set of system and software engineering capabilities that should be

present as organizations reach different levels of process capability and maturity.

The CMMI represents a process meta-model in two different ways: (1) as a “continuous”

model and (2) as a “staged” model. The continuous CMMI metamodel describes a process in

two dimensions as illustrated in Figure 30.2. Each process area (e.g., project planning or

requirements management) is formally assessed against specific goals and practices and is

rated according to the following capability levels:

Level 0: Incomplete—the process area (e.g., requirements management) is either not

performed or does not achieve all goals and objectives defined by the CMMI for level 1

capability for the process area.

Level 1: Performed—all of the specific goals of the process area (as defined by the CMMI)

have been satisfied. Work tasks required to produce defined work products are being

conducted.

CMMI Process Area Capability Profile.

Level 2: Managed—all capability level 1 criteria have been satisfied. In addition, all work

associated with the process area conforms to an organizationally defined policy; all people

doing the work have access to adequate resources to get the job done; stakeholders are actively

involved in the process area as required; all work tasks and work products are “monitored,

controlled, and reviewed; and are evaluated for adherence to the process description”.

Level 3: Defined—all capability level 2 criteria have been achieved. In addition, the process is

“tailored from the organization’s set of standard processes according to the organization’s

tailoring guidelines, and contributes work products, measures, and other process-improvement

information to the organizational process assets”.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

96

Level 4: Quantitatively managed—all capability level 3 criteria have been achieved. In

addition, the process area is controlled and improved using measurement and quantitative

assessment. “Quantitative objectives for quality and process performance are established and

used as criteria in managing the process”.

Level 5: Optimized—all capability level 4 criteria have been achieved. In addition, the process

area is adapted and optimized using quantitative (statistical) means to meet changing customer

needs and to continually improve the efficacy of the process area under consideration.

The CMMI defines each process area in terms of “specific goals” and the “specific practices”

required to achieve these goals. Specific goals establish the characteristics that must exist if the

activities implied by a process area are to be effective. Specific practices refine a goal into a

set of process-related activities.

The staged CMMI model defines the same process areas, goals, and practices as the

continuous model. The primary difference is that the staged model defines five maturity levels,

rather than five capability levels. To achieve a maturity level, the specific goals and practices

associated with a set of process areas must be achieved. The relationship between maturity

level and Process level is shown in the diagram below:

Process Areas required to achieve a Maturity level.

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

97

6.6. CMMI Vs ISO

Although the SEI’s CMM and CMMI are the most widely applied SPI frameworks, a number

of alternatives7 have been proposed and are in use. Among the most widely used of these

alternatives are:

• SPICE—an international initiative to support ISO’s process assessment and life cycle

process standards [SPI99].

• ISO/IEC 15504 for (Software) Process Assessment [ISO08].

• Bootstrap—an SPI framework for small and medium-sized organizations that conforms to

SPICE [Boo06].

• PSP and TSP—individual and team-specific SPI frameworks ([Hum97], [Hum00]) that

focus on process in-the-small, a more rigorous approach to software development coupled

with measurement.

• TickIT—an auditing method [Tic05] that assesses an organization’s compliance to ISO

Standard 9001:2000.

6.7. MsCall’s Quality Factors

McCall, Richards, and Walters [McC77] propose a useful categorization of factors that affect

software quality. These software quality factors focus on three important aspects of a software

product: its operational characteristics, its ability to undergo change, and its adaptability to

new environments. McCall and his colleagues provide the following descriptions:

Correctness: The extent to which a program satisfies its specification and fulfills the

customer’s mission objectives.

Reliability: The extent to which a program can be expected to perform its intended function

with required precision. [It should be noted that other, more complete definitions of reliability

have been proposed.

Efficiency: The amount of computing resources and code required by a program to perform its

function.

Integrity: Extent to which access to software or data by unauthorized persons can be

controlled.

Usability: Effort required learning, operating, preparing input for, and interpreting output of a

program.

Maintainability: Effort required locating and fixing an error in a program. [This is a very

limited definition.]

Flexibility: Effort required modifying an operational program.

Testability: Effort required testing a program to ensure that it performs its intended function.

Portability: Effort required transferring the program from one hardware and/or software

system environment to another.

Reusability: Extent to which a program [or parts of a program] can be reused in other

applications—related to the packaging and scope of the functions that the program performs.

Interoperability: Effort required to couple one system to another

Course Name : Computer Engineering Subject Title : Software Engineering

Course Code : CO/CM/IF/CD Subject Code : 17513

98

McCall’s software quality factors

It is difficult, and in some cases impossible, to develop direct measures of these quality

factors. In fact, many of the metrics defined by McCall et al. can be measured only

indirectly. However, assessing the quality of an application using these factors will provide

you with a solid indication of software quality.

Question Bank

1. Define SQA and list three quality aspects. 4 Marks

2. Explain Six Sigma. DMADV and DMAIC w.r.t Six Sigma 4 Marks

3. Define software reliability and software availability. 4 Marks

4. Explain Eight McCalls quality factors. 4 Marks

5. Define quality (QC), Quality Assurance (QA) 4 Marks

6. Write in brief on ISO 9000 software quality standards 4 Marks

7. Write a detail note on Software Quality Assurance 4 Marks

8. Write a note on Statistical SQA. 4 Marks

9. Explain CMMI with its levels of Integration 4 Marks

10. Compare CMMI and ISO w.r.t Scope, approach and implementation 4 Marks

11. List quality evaluation standards. Explain any one in detail. 4 Marks

