

Unguided Media

- Unguided media transport electromagnetic waves without using a physical conductor.
- This type of communication is often referred to as **wireless communication**.
- Signals are **normally broadcast** through **free space** and thus are available to anyone who has a device capable of receiving them.

Band	Range	Propagation	Application
VLF (very low frequency)	3-30 kHz	Ground	Long-range radio navigation
LF (low frequency)	30-300 kHz	Ground	Radio beacons and navigational locators
MF (middle frequency)	300 kHz-3 MHz	Sky	AM radio
HF (high frequency)	3-30 MHz	Sky	Citizens band (CB), shi <i>pi</i> aircraft communication
VHF (very high frequency)	30-300 MHz	Sky and line-of-sight	VHF TV, FM radio
UHF (ultrahigh frequency)	300 MHz-3 GHz	Line-of-sight	UHFTV, cellular phones, paging, satellite
SHF (superhigh frequency)	3-30 GHz	Line-of-sight	Satellite communication
EHF (extremely high frequency)	30-300 GHz	Line-of-sight	Radar, satellite

Propagation Methods

- Unguided signals can travel from the source to destination in several ways:
- Ground propagation,
- Sky-Propagation, and
- Line-of-Sight Propagation

Propagation Methods

- 1. Ground propagation mode:
- Radio waves travel close to the earth.
- These low-frequency signals proceed in all directions from the transmitting antenna and follow the curvature of the planet.
- **Distance** depends on the amount of **power in the signal**: The greater the power, the greater the distance.

Propagation Methods 3. Line-of-sight propagation mode:In this, very high-frequency signals are transmitted in straight lines directly from antenna to antenna. Antennas must be directional, facing each other and tall enough Line-of-sight propagation is tricky because radio transmissions cannot be completely focused. Line-of-sight propagation (above 30 MHz)

Wireless (Unguided Media) Transmission

- Transmission and reception are achieved by means of an antenna
- Directional
 - Transmitting antenna puts out focused beam
 - Transmitter and receiver must be aligned
- Omnidirectional
 - Signal spreads out in all directions.
 - Can be received by many antennas

Radio Wave Transmission

- Electromagnetic waves ranging in frequency between **3 kHz and 1 GHz** are normally called radio waves.
- Radio waves, are omnidirectional, they are propagated in all directions.
- A sending antenna sends waves that can be received by **any receiving antenna**.

Radio Wave Transmission

- Radio waves, particularly of **low and medium frequencies**, **can penetrate walls**.
- It is an **<u>advantage</u>** because, an **AM radio** can receive signals **inside a building**.
- It is a <u>disadvantage</u> because we cannot isolate a communication to just <u>inside or outside a</u> <u>building</u>.

Radio Wave Transmission

- The omnidirectional property has a disadvantage.
 - The radio waves transmitted by **one antenna are susceptible to interference by another antenna** that may send signals using the **same frequency or band**.
- Radio waves, propagate in the sky mode, can **travel long distances**.

Radio Wave Transmission

Applications

- The omnidirectional characteristics of radio waves make them useful for **multicasting**, in which there is **one sender but many receivers**.
- AM and FM radio,
- Television,
- Maritime radio,
- · Cordless phones, and paging.

Microwave Transmission

- Electromagnetic waves having frequencies between **1GHz and 300 GHz** are called microwaves.
- Microwaves are unidirectional.
- When an antenna transmits microwave waves, they can be **narrowly focused**.
- This means that the sending and receiving antennas need to be aligned.
- The unidirectional property has an obvious advantage.
 A pair of antennas can be aligned without interfering with another pair of aligned antennas.

Microwave Transmission

- Line-of-sight transmission.
- This means that microwaves must be transmitted in a straight line and that no obstructions can exists, such as buildings or mountains, between microwave stations.
- To avoid possible obstructions, microwave antennas often are positioned on the tops of buildings, towers, or mountains.

Microwave Transmission

- Characteristics of microwave propagation:
- Microwave propagation is line-of-sight.
 - Towers that are far apart need to be very tall.
 - Repeaters are often needed for long distance communication.
- Very high-frequency microwaves cannot penetrate walls.
 disadvantage if receivers are inside buildings.
- The microwave band is relatively wide, almost 299 GHz.
 Therefore wider sub bands, and a high data rate is possible.
- Use of certain portions of the band requires permission from authorities.

Microwave Transmission

• A parabolic dish antenna:

- Every signal that hits a dish reflects off the curve at angles such that all the lines intersect in a common point called the **focus**.
- In this way, more of the signal is recovered than would be possible with a single-point receiver.

Horn Antenna:

- Outgoing transmissions are broadcast through a horn aimed at the dish.
- The microwaves hit the dish and are deflected outward in a reversal of the receipt path.

Microwave Transmission

- Applications :
- Microwaves, due to their unidirectional properties, are very useful when unicast (one-to-one)communication is needed between the sender and the receiver.
- They are used in
 - Cellular phones,
 - Televisions
 - Satellite networks, and
 - wireless LANs.

A. Terrestrial Microwave

- Used for long-distance telephone service.
- Uses radio frequency spectrum, from **2 to 40 GHz**.
- Parabolic dish transmitter, mounted high.
- Requires **unobstructed line of sight** between source and receiver
- Curvature of the earth requires stations (**repeaters**) 30 miles apart

Advantages:

- Effect of noise is reduced because of repeaters.
- Maintenance is less as compared to cable.
- No interference with other transmission channels.

Disadvantages:

- Communication can be affected because of atmospheric phenomenon and passing airplanes and rain
- Line of sight requirement
- Expensive towers and repeaters.

Applications

- Long-distance telecommunication service • requires fewer amplifiers or repeaters than
 - coaxial cable
 - Example
 - telephone systemTV distribution
 - I v distribut
- Short point-to-point links
- Data link between local area network
- Closed-Circuit TV

Satellite

• A Satellite is a solid object which revolves around earth due to the effect of gravitational forces

• A satellite is an object which has been placed into orbit by human endeavor.

- Types
 - I. Natural satellites
 - II. artificial satellites

Satellite Communication

- In satellite communication,
 - signal transfer is done with the help of **satellite**.
- In this,
- 1. The signal, a beam of **modulated microwaves** is sent towards the satellite called **UPLINK (6 Ghz)**.
- 2. Then the satellite processes the signal and send it back to the receiver's antenna present on the earth's surface called as **DOWNLINK (4Ghz)**.

Satellite Communication

- The satellite has to **receive**, **process** and **transmit** the signal.
- All these functions are performed by a unit called as **Satellite Transponder**.
- The communication satellite has two sets of transponders.
- Each set having 12 transponders.
- Each transponder has a bandwidth of 36MHz.

Satellite Communication

- Types of Satellite by there purpose
 - Communication Satellite
 - Weather satellite
 - Remote- Sensing Satellite
 - Scientific Satellite

Satellite Communication Low-Earth-Orbit (LEO) Altitude (375-1000 miles) Revolution time: 90 min - 3 hours. Advantages: Reduces transmission delay Eliminates need for bulky receiving equipment.

- Disadvantages:
 - Smaller coverage area.
 - > Shorter life span (5-8 yrs.) than GEOs (10 yrs).

Principal Satellite Transmission Bands

• C band:

- 4(downlink) 6(uplink) GHz
- the first to be designated
- Ku band:
 - 12(downlink) -14(uplink) GHz
 - rain interference is the major problem
- Ka band:
 - 19(downlink) 29(uplink) GHz
 - equipment needed to use the band is still very expensive

Applications of satellite

- Television distribution
 - A network provides programming from a central location
 Direct broadcast satellite (DBS)
- Long-distance **telephone** transmission • High-usage international trunks
- Private business networks
- Military Applications
- Other applications
 - digital cinema
 - Satellite radio
 - Satellite internet access

Infrared

- Infrared waves, with frequencies from **300 GHz to 400 THz** (wavelengths from **1 mm to 770 nm**),
- Used for **short-range communication**.
- Infrared waves, having high frequencies, cannot penetrate walls.
- This characteristic **prevents interference between one system and another**;
- a short-range communication system in one room cannot be affected by another system in the next room.

Infrared

- The **remote controls** used for televisions, VCRs, and stereos all use infrared communication.
- They are relatively directional, cheap, and easy to build.

Applications

- TV Remote control
- Guidance in weapon system
- Wireless keyboards and mouse.

Multiple Access Methods

- In wireless communications, it is necessary to utilize limited frequency bands at the same time, allowing multiple users to share radio channel simultaneously.
- System employs different carrier frequency FDMA system.
- System uses distinct time TDMA system.
- System uses different code CDMA system.

Multiple Access Methods

- Satellite Communication is based on Modulation Technique.
- Three Multiple Access Methods used by Satellite are:
 Frequency Division Multiple Access (FDMA)
 - Time Division Multiple Access (TDMA)
 - Code Division Multiple Access (CDMA)

FDMA

- Simplest
- Best suited for analog links.
- Each station has its own frequency band, separated by guard bands.
- Receivers tune to the right frequency.

TDMA

- All stations transmit data on same frequency, but at different times
- Needs time synchronization
- Pros
 - users can be given different amounts of bandwidth
 - mobiles can use idle times to determine best base station
 - can switch off power when not transmitting
- Cons
 - synchronization overhead
 - greater problems with multipath interference on wireless links

CDMA

- Users separated both by time and frequency
- Send at a different frequency at each time slot (*frequency hopping*)
- Or, convert a single bit to a code (*direct sequence*)
 receiver can decipher bit by inverse process
- Pros
 - hard to spy
 - · immune from narrowband noise
 - no need for all stations to synchronize
 - no hard limit on capacity of a cell
 - all cells can use all frequencies

CDMA

• Cons

- Implementation complexity
- Need for power control
 to avoid capture
- Need for a large contiguous frequency band (for direct sequence)
- Problems installing in the field